Year 12 Summer Task - Maths

Please complete the odd number questions. If you would like to do more than this please feel free, but these are a requirement.

For those students studying Further Maths, you will need to complete it all.

Volume of sphere $\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

1. (a) Write down the exact value of 3^{-2}
(b) Simplify fully $\frac{7^{2} \times 7^{4}}{7^{3}}$
(c) Expand $(2+\sqrt{3})(1+\sqrt{3})$

Give your answer in the form $a+b \sqrt{3}$, where a and b are integers.
2. Work out

$$
\frac{(5+\sqrt{3})(5-\sqrt{3})}{\sqrt{22}}
$$

Give your answer in its simplest form.
(Total 3 marks)
3. (a) Evaluate
(i) 3^{-2}
(ii) $36^{\frac{1}{2}}$
(iii) $27^{\frac{2}{3}}$
(iv) $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$
(b) (i) Rationalise the denominator of $\frac{21}{\sqrt{7}}$ and simplify your answer.
(ii) Expand $(\sqrt{5}+2 \sqrt{3})(\sqrt{5}-2 \sqrt{3})$

Express your answer as simply as possible
4. (a) Find the value of $16^{\frac{1}{2}}$
(b) Given that $\sqrt{40}=k \sqrt{10}$, find the value of k.
\qquad

A large rectangular piece of card is $(\sqrt{5}+\sqrt{20}) \mathrm{cm}$ long and $\sqrt{8} \mathrm{~cm}$ wide.

A small rectangle $\sqrt{2} \mathrm{~cm}$ long and $\sqrt{5} \mathrm{~cm}$ wide is cut out of the piece of card.
(c) Express the area of the card that is left as a percentage of the area of the large rectangle.
5. (a) Express $\frac{6}{\sqrt{2}}$ in the form $a \sqrt{b}$, where a and b are positive integers.

The diagram shows a right-angled isosceles triangle.
The length of each of its equal sides is $\frac{6}{\sqrt{2}} \mathrm{~cm}$.

(b) Find the area of the triangle.

Give your answer as an integer.
cm^{2}
6. (a) Find the value of
(i) 64^{0}
(ii) $64^{\frac{1}{2}}$
(iii) $64^{-\frac{2}{3}}$
(4)
(b) $3 \times \sqrt{27}=3^{n}$

Find the value of n.
$n=$
7. (a) Rationalise

$$
\frac{1}{\sqrt{7}}
$$

(b) (i) Expand and simplify

$$
(\sqrt{ } 3+\sqrt{ } 15)^{2}
$$

Give your answer in the form $n+m \sqrt{ } 5$, where n and m are integers.
(ii)

Diagram NOT accurately drawn

All measurements on the triangle are in centimetres.
$A B C$ is a right-angled triangle. k is a positive integer.

Find the value of k.

$$
k=
$$

\qquad
8. Work out the value of
(i) $\left(2^{2}\right)^{3}$
(ii) $(\sqrt{3})^{2}$
(iii) $\sqrt{2^{4} \times 9}$
(Total 4 marks)
9. Work out
(i) 4^{0}
(ii) 4^{-2}
(iii) $16^{\frac{3}{2}}$
\qquad
(Total 3 marks)
10. $2^{x} \times 2^{y}=2^{10}$
and
$2^{x} \div 2^{y}=2^{4}$
Work out the value of x and the value of y.

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

(Total 3 marks)
11. (a) Write down the value of $36^{\frac{1}{2}}$
(1)
(b) $4 n^{\frac{3}{2}}=8^{-\frac{1}{3}}$

Find the value of n.

$$
n=
$$

12. Write down the value of
(a) 7^{0}
(b) 4^{-1}
13. Work out the value of
(i) $\left(2^{2}\right)^{3}$
(ii) $(\sqrt{3})^{2}$
(iii) $\sqrt{2^{4} \times 9}$
(Total 4 marks)
14. Simplify fully
(i) $\left(p^{3}\right)^{3}$
(ii) $\frac{3 q^{4} \times 2 q^{5}}{q^{3}}$
15.

$$
x=2 p, y=2 q
$$

(a) Express in terms of x and/or y,
(i) $2 p+q$
(ii) $2^{2 q}$
(iii) 2^{p-1}

$$
\begin{aligned}
x y & =32 \\
\text { and } 2 x y^{2} & =32
\end{aligned}
$$

(b) Find the value of p and the value of q.

$$
\begin{aligned}
& p= \\
& q=
\end{aligned}
$$

16. The diagram represents a vertical flagpole, $A B$.

The flagpole is supported by two ropes, $B C$ and $B D$, fixed to the horizontal ground at C and at D.

$A B=12.8 \mathrm{~m}$.
$A C=6.8 \mathrm{~m}$.
Angle $B D A=42^{\circ}$.
(a) Calculate the size of angle $B C A$.

Give your answer correct to 3 significant figures.
(b) Calculate the length of the rope $B D$.

Give your answer correct to 3 significant figures.

$A B=11.7 \mathrm{~m}$.
$B C=28.3 \mathrm{~m}$.
Angle $A B C=67^{\circ}$.
(a) Calculate the area of the triangle $A B C$.

Give your answer correct to 3 significant figures.
m^{2}
(2)
(b) Calculate the length of $A C$.

Give your answer correct to 3 significant figures.
18. The depth, D metres, of the water at the end of a jetty in the afternoon can be modelled by this formula

$$
D=5.5+A \sin 30(t-k)^{\circ}
$$

where
t hours is the number of hours after midday, A and k are constants.

Yesterday the low tide was at 3 p.m.
The depth of water at low tide was 3.5 m .
Find the value of A and k.

$$
A=
$$

\qquad

$$
k=
$$

\qquad
19.

$D E=6 \mathrm{~m}$.
$E G=10 \mathrm{~m}$.
$F G=8 \mathrm{~m}$.
Angle $D E G=90^{\circ}$. Angle $E F G=90^{\circ}$.
(a) Calculate the length of $D G$.

Give your answer correct to 3 significant figures.
m
(b) Calculate the size of the angle marked x°. Give your answer correct to one decimal place.
\qquad

$A B=3.2 \mathrm{~cm}$
$B C=8.4 \mathrm{~cm}$
The area of triangle $A B C$ is $10 \mathrm{~cm}^{2}$.
Calculate the perimeter of triangle $A B C$.
Give your answer correct to three significant figures.
21. Here is a right-angled triangle.

Diagram NOT accurately drawn
(a) Calculate the size of the angle marked x. Give your answer correct to 1 decimal place.

$$
x=. .{ }^{\circ}
$$

(3)

Here is another right-angled triangle.

Diagram NOT accurately

(b) Calculate the value of y.

Give your answer correct to 1 decimal place.

$$
\begin{equation*}
\mathrm{y}= \tag{3}
\end{equation*}
$$

\qquad cm
accurately drawn

The diagram represents a vertical pole $A C D$.
$A B$ is horizontal ground. $B C$ is a wire of length 8.5 metres.
The height of the pole $A D$ is 9 metres.
For the pole to be correctly installed, the length $D C$ has to be at least 1 metre.

Show that the pole has been correctly installed.
23. The graph of $y=\mathrm{f}(x)$ is shown on the grids.
(a) On this grid, sketch the graph of $y=\mathrm{f}(x)+2$

(b) On this grid, sketch the graph of $y=-\mathrm{f}(x)$

(2)
(Total 4 marks)
24. $x^{2}-8 x+23=(x-p)^{2}+q$ for all values of x.
(a) Find the value of p and the value of q.

$$
\begin{aligned}
& p= \\
& q=
\end{aligned}
$$

Here is a sketch of the curve with equation $y=x^{2}-8 x$ $+23$

B is the minimum point on the curve.
(b) Find the coordinates of B.
\qquad

The equation of the curve can be written in the form $y=\mathrm{f}$ (x),
where $\mathrm{f}(x)=x^{2}-8 x+23$
(c) On the diagram below, draw a sketch of the curve $y=\mathrm{f}(-x)$.

(1)
(Total 5 marks)
25.

The diagram shows part of the curve with equation $y=$ $\mathrm{f}(x)$.
The coordinates of the maximum point of this curve are $(2,3)$.

Write down the coordinates of the maximum point of the curve with equation
(a) $y=\mathrm{f}(x-2)$
\qquad
(b) $y=2 \mathrm{f}(x)$

(1)
(Total 2 marks)
26.

The curve with equation $y=\mathrm{f}(x)$ is translated so that the point at $(0,0)$ is mapped onto the point $(4,0)$.
(a) Find an equation of the translated curve.

The grid shows the graph of $y=\cos x^{\circ}$ for values of x from 0 to 540
(b) On the grid, sketch the graph of $y=3 \cos \left(2 x^{\circ}\right)$ for values of x from 0 to 540
(Total 4 marks)
27. The graph of $y=\mathrm{f}(x)$ is shown on the grids.
(a) On this grid, sketch the graph of $y=\mathrm{f}(x)-4$

(2)
(b) On this grid, sketch the graph of $y=\mathrm{f}\left(\frac{1}{2} x\right)$.

(2)
(Total 4 marks)
28. For all values of x and $m, \quad x^{2}-2 m x=(x-m)^{2}-k$
(a) Express k in terms of m.

The expression $\quad x^{2}-2 m x$ has a minimum value as x varies.
(b) (i) Find the minimum value of $x^{2}-2 m x$. Give your answer in terms of m.
(ii) State the value of x for which this minimum value occurs.
Give your answer in terms of m.
29.

Diagram NOT

The diagram shows a trapezium.
The lengths of three of the sides of the trapezium are x $-5, x+2$ and $x+6$.
All measurements are given in centimetres.
The area of the trapezium is $36 \mathrm{~cm}^{2}$.
(a) Show that $x^{2}-x-56=0$
(b) (i) Solve the equation $x^{2}-x-56=0$
(ii) Hence find the length of the shortest side of the trapezium.
cm
30. Two numbers have a difference of 15 and a product of 199.75

The larger of the two numbers is x.
(a) Show that

$$
x^{2}-15 x-199.75=0
$$

(3)
(b) Solve the equation

$$
x^{2}-15 x-199.75=0
$$

31. (a) Factorise $2 x^{2}-35 x+98$
(a) Solve the equation $2 x^{2}-35 x+98=0$
32.

Diagram NOT

$A T$ is a tangent at T to a circle, centre O.
$O T=x \mathrm{~cm}, A T=(x+5) \mathrm{cm}, O A=(x+8) \mathrm{cm}$.
(a) Show that $x^{2}-6 x-39=0$
(b) Solve the equation

$$
x^{2}-6 x-39=0 \quad \text { to }
$$

find the radius of the circle.
Give your answer correct to 3 significant figures.
33. The length of a rectangle is twice the width of the rectangle.
The length of a diagonal of the rectangle is 25 cm .

Work out the area of the rectangle.
Give your answer as an integer.
cm^{2}
(Total 3 marks)
34. (a) Solve $x^{2}+x+11=14$

Give your solutions correct to 3 significant figures.
35. The nth even number is $2 n$.

The next even number after $2 n$ is $2 n+2$
(a) Explain why.
(1)
(b) Write down an expression, in terms of n, for the next even number after $2 n+2$
(1)
(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6
36. Simplify fully

$$
\frac{x+3}{4}+\frac{x-5}{3}
$$

(Total 3 marks)

37. Simplify

$$
\frac{x^{2}+2 x+1}{x^{2}+3 x+2}
$$

38. Simplify fully

$$
\frac{2 x^{2}+3 x+1}{x^{2}-3 x-4}
$$

(Total 3 marks)

39. Write as a single fraction in its simplest form

$$
\frac{2 x}{x-1}-\frac{7 x-3}{x^{2}-1}
$$

40. Simplify fully

$$
\frac{x^{2}-2 x-15}{x^{2}-4 x-21}
$$

(Total 3 marks)
41. Simplify fully

$$
\frac{x^{2}+x-6}{x^{2}-7 x+10}
$$

42. Simplify fully

$$
\frac{x^{2}-8 x+15}{2 x^{2}-7 x-15}
$$

(Total 3 marks)
43. Simplify

$$
\frac{3 x^{2}-16 x-35}{9 x^{2}-25}
$$

(Total 3 marks)

44. Solve the simultaneous equations

$$
3 x+4 y=7
$$

$$
5 x-2 y=16
$$

$$
\begin{aligned}
& x=. ~ \\
& y=. ~
\end{aligned}
$$

(Total 3 marks)

45. Solve the simultaneous equations

$$
\begin{aligned}
& 3 x+2 y=11 \\
& 2 x-5 y=20
\end{aligned}
$$

$$
\begin{aligned}
& x=\text {...................................... } \\
& y=\text {...................................... }
\end{aligned}
$$

46. Solve the simultaneous equations.

$$
\begin{aligned}
& 2 x+3 y=0 \\
& x-3 y=9
\end{aligned}
$$

$x=. ~, ~ y=~$ \qquad
(Total 3 marks)
47. Solve the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& y=3 x+1
\end{aligned}
$$

$$
\begin{aligned}
& x=\ldots ~ \\
& y= \\
& \text { or } x=\ldots . ~ \\
& y= \\
& \text {...................... }
\end{aligned}
$$

48.

The diagram shows graphs of $y=\frac{1}{2} x+2$ and $2 y+$ $3 x=12$
(a) Use the diagram to solve the simultaneous equations

$$
\begin{aligned}
& y=\frac{1}{2} x+2 \\
& 2 y+3 x=12
\end{aligned}
$$

\qquad
(b) Find an equation of the straight line which is parallel to the
line $y=\frac{1}{2} x+2$ and passes through the point $(0,4)$.

