Year 12 Summer Task - Maths

Please complete the odd number questions. If you would like to do more than this please feel free, but these are a requirement.

For those students studying Further Maths, you will need to complete it all.

Volume of sphere $\frac{4}{3}\pi r^3$

Volume of cone $\frac{1}{3}\pi r^2 h$

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = πrl

1. (a) Write down the exact value of 3^{-2}

(b) Simplify fully $\frac{7^2 \times 7^4}{7^3}$

(2)

(c) Expand $(2+\sqrt{3})(1+\sqrt{3})$

Give your answer in the form $a + b\sqrt{3}$, where *a* and *b* are integers.

••••••••••••••••••••••••••••••••••••

(2) (Total 5 marks)

2. Work out

$$\frac{(5+\sqrt{3})(5-\sqrt{3})}{\sqrt{22}}$$

Give your answer in its simplest form.

.....

(Total 3 marks)

(i)
$$3^{-2}$$

(ii) $36^{\frac{1}{2}}$
(iii) $27^{\frac{2}{3}}$
(iv) $\left(\frac{16}{81}\right)^{-\frac{3}{4}}$
(i) Rationalise the denominator of $\frac{21}{\sqrt{7}}$ and simplify your

answer.

(b)

(ii) Expand $(\sqrt{5} + 2\sqrt{3})(\sqrt{5} - 2\sqrt{3})$ Express your answer as simply as possible (5)

(4) (Total 9 marks

(1)

- 4. (a) Find the value of $16^{\frac{1}{2}}$
 - (b) Given that $\sqrt{40} = k\sqrt{10}$, find the value of *k*.

A large rectangular piece of card is $(\sqrt{5} + \sqrt{20})$ cm long and $\sqrt{8}$ cm wide.

A small rectangle $\sqrt{2}$ cm long and $\sqrt{5}$ cm wide is cut out of the piece of card.

(c) Express the area of the card that is left as a percentage of the area of the large rectangle.

.....% (4) (Total 6 marks) 5. (a) Express $\frac{6}{\sqrt{2}}$ in the form $a\sqrt{b}$, where *a* and *b* are positive integers.

(2)

The diagram shows a right-angled isosceles triangle.

The length of each of its equal sides is $\frac{6}{\sqrt{2}}$ cm.

(b) Find the area of the triangle.Give your answer as an integer.

..... cm²

(2) (Total 4 marks) **6.** (a) Find the value of

(i) 64^0 (ii) $64^{\frac{1}{2}}$ (iii) $64^{-\frac{2}{3}}$

(b) $3 \times \sqrt{27} = 3^n$ Find the value of *n*.

> *n* =(2) (Total 6 marks)

(4)

7. (a) Rationalise

 $\frac{1}{\sqrt{7}}$

(b) (i) Expand and simplify

 $(\sqrt{3} + \sqrt{15})^2$

Give your answer in the form $n + m\sqrt{5}$, where *n* and *m* are integers.

All measurements on the triangle are in centimetres.

ABC is a right-angled triangle. *k* is a positive integer.

Find the value of *k*.

k =

(5) (Total 7 marks) 8. Work out the value of

10.
$$2^x \times 2^y = 2^{10}$$

and

 $2^{x} \div 2^{y} = 2^{4}$

Work out the value of *x* and the value of *y*.

x = *y* = (Total 3 marks)

11. (a) Write down the value of $36^{\frac{1}{2}}$

(b)
$$4n^{\frac{3}{2}} = 8^{-\frac{1}{3}}$$

Find the value of *n*.

12. Write down the value of

(Total 3 marks)

 $x = 2^p, y = 2^q$ (a) Express in terms of *x* and/or *y*, (i) 2^{p+q} (ii) 2²q

(3)

xy = 32

and
$$2xy^2 = 32$$

(b) Find the value of p and the value of q.

(iii) 2^{p-1}

15.

16. The diagram represents a vertical flagpole, *AB*. The flagpole is supported by two ropes, *BC* and *BD*, fixed to the horizontal ground at *C* and at *D*.

(a) Calculate the size of angle *BCA*.Give your answer correct to 3 significant figures.

·····° (3)

(b) Calculate the length of the rope *BD*.Give your answer correct to 3 significant figures.

..... m (3) (Total 6 marks)

AB = 11.7 m. BC = 28.3 m. Angle $ABC = 67^{\circ}$.

(a) Calculate the area of the triangle *ABC*.Give your answer correct to 3 significant figures.

(b) Calculate the length of *AC*.Give your answer correct to 3 significant figures.

..... m (3) (Total 5 marks) **18.** The depth, *D* metres, of the water at the end of a jetty in the afternoon can be modelled by this formula

 $D = 5.5 + A \sin 30(t-k)^{\circ}$

where

t hours is the number of hours after midday, *A* and *k* are constants.

Yesterday the low tide was at 3 p.m. The depth of water at low tide was 3.5 m.

Find the value of *A* and *k*.

A =

k = (Total 4 marks)

DE = 6m. EG = 10 m. FG = 8 m.Angle $DEG = 90^{\circ}$. Angle $EFG = 90^{\circ}$.

(a) Calculate the length of *DG*.Give your answer correct to 3 significant figures.

..... m

(3)

(b) Calculate the size of the angle marked x° . Give your answer correct to one decimal place.

> (3) (Total 6 marks)

20.

AB = 3.2 cmBC = 8.4 cm

The area of triangle ABC is 10 cm^2 .

Calculate the perimeter of triangle *ABC*. Give your answer correct to three significant figures.

> cm (Total 6 marks)

21. Here is a right-angled triangle.

(a) Calculate the size of the angle marked *x*.Give your answer correct to 1 decimal place.

x =°

(3)

Here is another right-angled triangle.

Diagram **NOT** accurately

(b) Calculate the value of *y*.Give your answer correct to 1 decimal place.

22.

The diagram represents a vertical pole ACD.

AB is horizontal ground. BC is a wire of length 8.5 metres.

The height of the pole AD is 9 metres.

For the pole to be correctly installed, the length *DC* has to be at least 1 metre.

Show that the pole has been correctly installed.

.....

(Total 4 marks)

23. The graph of y = f(x) is shown on the grids.

(a) On this grid, sketch the graph of y = f(x) + 2

(b) On this grid, sketch the graph of y = -f(x)

(2) (Total 4 marks)

24. $x^2 - 8x + 23 = (x - p)^2 + q$ for all values of *x*.

(a) Find the value of p and the value of q.

$$p = \dots$$

$$q = \dots$$
(3)

Here is a sketch of the curve with equation $y = x^2 - 8x + 23$

B is the minimum point on the curve.

(b) Find the coordinates of *B*.

(1)

The equation of the curve can be written in the form y = f(x),

where $f(x) = x^2 - 8x + 23$

(c) On the diagram below, draw a sketch of the curve y = f(-x).

The diagram shows part of the curve with equation y = f(x).

The coordinates of the maximum point of this curve are (2, 3).

Write down the coordinates of the maximum point of the curve with equation

26.

The curve with equation y = f(x) is translated so that the point at (0, 0) is mapped onto the point (4, 0).

(a) Find an equation of the translated curve.

The grid shows the graph of $y = \cos x^{\circ}$ for values of x from 0 to 540

(b) On the grid, sketch the graph of $y = 3 \cos (2x^\circ)$ for values of *x* from 0 to 540

(2) (Total 4 marks)

- **27.** The graph of y = f(x) is shown on the grids.
 - (a) On this grid, sketch the graph of y = f(x) 4

(2)

(b) On this grid, sketch the graph of $y = f(\frac{1}{2}x)$.

28. For all values of *x* and *m*,
$$x^2 - 2mx = (x - m)^2 - k$$

(a) Express k in terms of m.

(2)

The expression $x^2 - 2mx$ has a minimum value as x varies.

(b) (i) Find the minimum value of $x^2 - 2mx$. Give your answer in terms of *m*.

•••••

(ii) State the value of *x* for which this minimum value occurs.Give your answer in terms of *m*.

.....

(3) (Total 5 marks)

The diagram shows a trapezium. The lengths of three of the sides of the trapezium are x - 5, x + 2 and x + 6.

All measurements are given in centimetres.

The area of the trapezium is 36 cm^2 .

(a) Show that $x^2 - x - 56 = 0$

(b) (i) Solve the equation $x^2 - x - 56 = 0$

.....

(ii) Hence find the length of the shortest side of the trapezium.

..... cm (4) (Total 8 marks)

(4)

30. Two numbers have a difference of 15 and a product of 199.75

The larger of the two numbers is x.

(a) Show that

$$x^2 - 15x - 199.75 = 0$$

(3)

(b) Solve the equation

$$x^2 - 15x - 199.75 = 0$$

(3) (Total 6 marks)

31. (a) Factorise $2x^2 - 35x + 98$

.....

(a) Solve the equation
$$2x^2 - 35x + 98 = 0$$

AT is a tangent at T to a circle, centre O. OT = x cm, AT = (x + 5) cm, OA = (x + 8) cm.

(a) Show that $x^2 - 6x - 39 = 0$

Т

(4)

(b) Solve the equation $x^2 - 6x - 39 = 0$ to find the radius of the circle. Give your answer correct to 3 significant figures.

Diagram NOT

accurately drawn

29

33. The length of a rectangle is twice the width of the rectangle.

The length of a diagonal of the rectangle is 25 cm.

Work out the area of the rectangle. Give your answer as an integer.

34. (a) Solve $x^2 + x + 11 = 14$ Give your solutions correct to 3 significant figures.

(3)

35. The *n*th even number is 2n.

The next even number after 2n is 2n + 2

(a) Explain why.

(1)

(b) Write down an expression, in terms of n, for the next even number after 2n + 2

••••••

(1)

(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6

(3)

(Total 5 marks)

$$\frac{x+3}{4} + \frac{x-5}{3}$$

.....

(Total 3 marks)

37. Simplify

$$\frac{x^2 + 2x + 1}{x^2 + 3x + 2}$$

(Total 3 marks)

Edexcel Internal Review

$$\frac{2x^2 + 3x + 1}{x^2 - 3x - 4}$$

.....

(Total 3 marks)

39. Write as a single fraction in its simplest form

$$\frac{2x}{x-1} - \frac{7x-3}{x^2-1}$$

•••••

(Total 4 marks)

$$\frac{x^2 - 2x - 15}{x^2 - 4x - 21}$$

•••••

(Total 3 marks)

41. Simplify fully

$$\frac{x^2 + x - 6}{x^2 - 7x + 10}$$

.....

(Total 3 marks)

$$\frac{x^2 - 8x + 15}{2x^2 - 7x - 15}$$

.....

(Total 3 marks)

43. Simplify

 $\frac{3x^2 - 16x - 35}{9x^2 - 25}$

(Total 3 marks)

Edexcel Internal Review

44. Solve the simultaneous equations

$$3x + 4y = 7$$

$$5x - 2y = 16.$$

(Total 3 marks)

45. Solve the simultaneous equations

$$3x + 2y = 11$$
$$2x - 5y = 20$$

x =

y =

(Total 4 marks)

46. Solve the simultaneous equations.

(Total 3 marks)

47. Solve the simultaneous equations

$$x^2 + y^2 = 5$$
$$y = 3x + 1$$

 $x = \dots$ $y = \dots$ or $x = \dots$ $y = \dots$

(Total 6 marks)

The diagram shows graphs of $y = \frac{1}{2}x + 2$ and 2y + 3x = 12

(a) Use the diagram to solve the simultaneous equations

$$y = \frac{1}{2}x + 2$$
$$2y + 3x = 12$$

$$x = \dots$$
 $y = \dots$

(1)

(b) Find an equation of the straight line which is parallel to the

line
$$y = \frac{1}{2}x + 2$$
 and passes through the point (0, 4).

48.