
 

GCSE Computer Science Booster Pack 
 

 

Commissioned by The PiXL Club Ltd. 

 
Welcome to the GCSE Computer Science Booster Pack. The aim of this pack is to help support the 

teaching of students of computer science who are also foundation tier maths students.  

The intention of the pack is to provide a simple and accessible explanation of the mathematical 

aspects of the computer science GCSE. These explanations are followed with a variety of questions 

and tasks. 

 

This could be applied to teaching in a number of ways.  

E.g. to support identified students prior to whole class teaching, as a therapy tool in the        DTT 

process. 

 

Notes for use: 

• The layout of the document is like a textbook. There is no space for pupils to write answers 

• There is an answer booklet to support the delivery of the pack’s content 

• There are many instances of pseudocode in the pack. Where this is the case the 

pseudocode used has followed OCR and AQA’s pseudocode guidance 

• However, each exam board uses varying pseudocode conventions. Please refer to your 

specific exam board’s guide wherever possible. 

 

 

  

This resource is strictly for the use of member schools for as long as they remain members of The PiXL 

Club. It may not be copied, sold nor transferred to a third party or used by the school after membership 

ceases. Until such time it may be freely used within the member school. 

 

All opinions and contributions are those of the authors. The contents of this resource are not connected with 

nor endorsed by any other company, organisation or institution. 
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Relational Operators  

 

 

Exercise A 

1  Which of the following are TRUE and which are FALSE?  If your answer is FALSE give the correct 

relational operation choosing from < and >. 

a  3 < 10 b  5 > 12 c  8 > 2  d  10 < 45  e  17 < 2 + 3 

f  20 - 5 > 16 g  30 ÷ 5 > 4 h  12 > 2 * 5 i  20 - 3 > 2 * 8   j  2 + 5 + 7 > 20 - 4 – 1 

 

2 Copy each question writing the correct relational operation for each.  Choose from ≤ and >. 

a  3 ⃝ 6   b  10 ⃝ 8   c 25 ⃝ 27   d  -8 ⃝ 8 

e  13 ⃝ 62   f  42 ⃝ 6   g  19 ⃝ -29   h  0 ⃝ -5 

 

3 Copy each question writing the correct relational operation for each.  Choose from ≤ and >. 

a 10 ⃝ 7 + 2  b  25 - 10 ⃝ 8 + 8 c  2 * 3 ⃝ 1 + 6 

d  25 ⃝ 48 – 25  e  -5 ⃝ 8 – 14  f  -10 ⃝ 46 – 47 

g  -11 ⃝ -3 - 9  h  22 / 2 ⃝ 3 * 4 i 11 / 2 ⃝ 7 * 5     

 

 

Relational operators, sometimes known as comparison operators, test the relationship between two 

numbers. This can include whether they are equal to each other, whether one number is  greater etc.  

< is a relational operation.  In maths is also called an inequality sign. 

< means a number that is less than another number 

Example 

4 is less than 12 can be written as 4 < 12 

> is also a relational operation.   

> means a number that is greater than another number 

Example 

40 is greater than 12 can be written as 40 > 12 

Other relational operators which you will be need to know and be able to use are: 

• == which means equal to 

• ≤ or <=  which means less than or equal to 

• ≥ or >= which means greater than or equal to  

• ≠ or !=  which means is not equal to 
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4 Which of the following are TRUE and which are FALSE?  If your answer is FALSE give the correct 

relational operation choosing from == and ≠.  

a 10 == 10  b  14 != 7 * 2  c  13 == 31 – 17 

d  23 == 48 – 25  e  -5 != 9 – 17  f  23-30 == -6 

 g  -7 == -3 - 7  h  17 == 51 / 3   i  -1 != 21 / 3 - 6 

 

5 Copy each question writing the correct relational operation for each. Choose from == and ≠  

a 10 ⃝ 7 + 3  b  16 ⃝ 48 / 3  c  24 ⃝ 6 * 4 

d  18 ⃝ 34 – 25  e  -11 ⃝ 8 – 14  f  -10 ⃝ 33 – 43 

 g  -9 ⃝ 4 - 14  h  13 ⃝ 52 / 4  i  22 + 26 ⃝ 12 * 4 

 

6 Which of the following are TRUE and which are FALSE?  If your answer is FALSE give the correct 

relational operation choosing from ≤ and >. 

a 10 ≥ 7 + 2  b  22 ≥ 12 + 9  c  21 ≤ 7 * 4 

d  19 ≥ 43 – 25  e  -5 ≤ 8 – 14  f  -6 ≤ 5 - 8 

 g  7 + 3 ≤ 33 / 3  h  15 ≥ 34 / 2  i  36 ≥ -12 * 3 

 

7 Copy each question writing the correct relational operation for each. Choose from < and ≥. 

a 19 ⃝ 11 + 7  b  20 - 4 ⃝ 12 + 6 c  13 ⃝ 14 – 17 

d  7 ⃝ 32 – 25  e  -5 ⃝ 12 – 14  f  -10 ⃝ 46 – 47 

 g  -9 ⃝ -3 -9  h  16 ⃝ 80 / 5  i  48 ⃝ 12 * 3 
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Arithmetic Operators

  

Exercise A 

1  Work out the correct answer to each calculation.  

a  55 + 20 =   b  5 * 12 =  c  42 - 13 =  d  45 / 9 =   

e  18 * 2 / 3 =  f  20 * 5 - 16 =  g  30 / 5 + 4 =  h  124 / 2 =  

i  66 - 6 / 3 =  j  2 + 5 * 7  = 

2 Copy each question writing the correct arithmetic operation for each. 

Choose from +, -, * or / 

a 6 ⃝ 6 = 36   b  80 ⃝ 8 = 10  c 25 ⃝ 27 = 52  d  -8 ⃝ 8 = 0  

Addition, Subtraction, Multiplication and Division. 

Arithmetic operators are used to perform a calculation, just like they are in conventional mathematics.  

Due to the symbols that are available on a computer, the symbols differ slightly to the ones that you are 

familiar with.  

Symbol Name Example 

+ Addition (+) print 6 + 2 

>>> 8 

- Subtraction (-) print = 3 – 2 

>>> 1 

* Multiplication (x) print = 5 * 2 

>>> 1 

/ Division (÷) print = 16 / 8 

>>> 2 

 

Arithmetic rules apply for the order of operations in Computer Science: 

Brackets   () 

Order         ^ 

Division      ÷ / 

Multiplication   x * 

Addition   + 

Subtraction   – 

 

Example 

Calculate 24 / 3 + 9  

Work out 24 / 3 first 

 

Answer: 8+9 = 17 
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e  13 ⃝ 49 = 62  f  42 ⃝ 2 = 21  g  15 ⃝ 4 = 60  h  0 ⃝ 5 = -5 

 

 

Exercise B 

1 Work out each of the following. Give your answers as a whole number with a remainder. 

The first one is done for you. 

a  37/4 = 9 r 1 b   55/3 c  60/2    d  48/5  e  82/3  f  77/2 

g  100/4  h  62/3  i 64/3    j  82/5  k  49/4  l  88/9 

 

2 Work out each of the following. Give your answer with a remainder. 

 a  116/5 b   121/7 c  111/2 d  148/5 e  157/3 f  166/8 

 g  119/4 h  232/7 i  199/6  j  187/6 k  195/4 l  255/9 

Division with Remainders 

When we divide one number by another we can write the answer in lots of different ways. 

For example 

21 / 4 = 5.25 

We could also write 

21 / 4 = 5 ¼  

You might also have seen division with remainders 

21 / 4 = 5 remainder 1 

 

4 goes into 21 5 whole times, with 1 left over 

The whole number part is called the quotient and the number left over is the remainder 

 

For larger numbers you can use a method such as short division to find the answer with a remainder 

Example 

Work out 266 / 3 

 0 8 8    r   2 

3 2 26 26 
 

Answer:     88 remainder 2 

(Check that 266 = 88 * 3 +2) 
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Exercise C 

1 Calculate each of the following.   

a  22 MOD 4 b   38 MOD  3 c  50 MOD 4 d  55 MOD 6 e  82 MOD 3 f  48 MOD 6 

g  110 MOD 3 h  99 mod 8 i 64 MOD 5   j  80 MOD 5 k  51 MOD 7 l  88 MOD 6 

 

2 Calculate each of the following.   

 a  112 % 7 b  118 % 8 c  120 % 8 d  143 % 5 e  156 % 9 f  162 % 8 

 g  113 % 11 h  219 % 7 i  203 % 6  j  181 % 6 k  199 % 4 l  243 % 8 

 

Modulo 

In Computer Science, the modulo operation finds only the remainder when one number divided is by 

another. This operation is often written as MOD or %. 

Example 

Find   7 MOD 2   We would say “7 modulo 2” 

7 / 2 = 3 remainder 1  

So 7 MOD 2 = 1 

This operation would result in the answer 1 because 5 divided by 2 leaves 1 as a remainder.  

 

Example 

Find   9 % 3  We would say “9 modulo 3” 

9 / 3 = 3 r 0  

So 9 % 3 = 0 

This operation would result in the answer 0 because 9 divided by 3 divides leaving no remainder.  
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Exercise D 

1 Work out each of the following 

 a  23 DIV 3 b   36 DIV 5 c  51 DIV 4 d  30 DIV 6 e  44 DIV 3 f  54 DIV 6 

 g  99 DIV 7 h  42 DIV 8 i 75 DIV 4   j  81 DIV 9 k  63 DIV 4 l  87 DIV 6 

 

2 Work out each of the following 

 a  112 // 6 b   111 // 5 c  138 // 7 d  140 // 4 e  156 // 4 f  173 // 8 

 g  130 // 7 h  240 // 3 i  207 // 5  j  189 // 6 k  193 // 4 l  251 // 6 

 

Quotient 

In Computer Science, the DIV operation finds only the whole number answer when one number divided is by 

another. (Remember this is called the quotient.) This operation is often written as DIV or //. It is also called 

integer division. 

 

Example 

Find   7 DIV 3 

7 / 3 = 2 r 1  

So the answer is 2 because 3 goes into 7 2 whole times and we ignore the remainder 

7 DIV 3 = 2 

 

Example 

Find   12 // 4 

12 / 4 = 3 r 0  

So the answer is 3 because 4 goes into 12 3 whole times. 

 

Together, DIV and MOD allow you to find the quotient and remainder in a division 

For example 

14 / 3 = 4 r 2 

Quotient = 4  14 DIV 3 = 4  

Remainder = 2  14 MOD 3 = 2 
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3 Match the calculations, quotients (DIV) and remainder (%)  

15 / 4 6 3 

29 / 5 8 2 

36 / 6 5 1 

34 / 16 3 0 

25 / 3 2 4 

 

Number Systems and Conversions 

 

Exercise A 

1 Write down the value of the digit 3 in each number. 

A 23 b  130  c  3400   d  173  e  7370  

Denary Number System (Decimal) 

The denary (decimal) number system is based on 10 numbers.   

The number system used in the UK is denary (decimal) and uses the digits from 0 – 9.   

It uses ‘places’ to determine the value of a number according to the column in which the digits are 

written. 

For example, the digit 2 is worth 20 in the number 26 and the digit 2 is worth 2000 in the number 

2067.  Both digits are the same but their value is changed by their place.   

This is known as place value.  

 Thousands Hundreds Tens Units 

     2 6 

Thousands Hundreds Tens Units 

  2 0  6 7 

 

The value of a digit in each column is 10 times (x10) larger than the same digit in the column to its 

right.  It is 10 times smaller than the same digit in the column on its left.  This is because the 

decimal (denary) system is base 10. 

Examples 

• 80 is ten times larger than 8. 

• 800 is one hundred times larger than 8. 

• 60 is ten times smaller than 600. 

Understanding how the decimal (denary) number system works helps you understand how other number 

systems work. 
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f  631 g 13100 h  3 900 000  I  5 301 100 j  2 453 200 

 

 

2 For each question decide whether the statement is TRUE or FALSE.  

If FALSE write the correct statement. 

a  4000 is one thousand times larger than 4 

 b  700 is one hundred times larger than 7 

 c  900 is one hundred times larger than 90 

 d  20 000 is one hundred times larger than 200 

 e  5 is ten times smaller than 50 

 f  60 is one thousand times smaller than 6 000 

 g  2 000 000 is one thousand times larger than 2 000 

 h  800 is one thousand times smaller than 80 000 

 

3 For each pair of numbers write down how many times larger the first is than the second. 

 a  60 : 6  b  300 : 30  c  2000 : 200 

d  600 : 6  e  4000 : 4  f  90 000 : 9 000 

g  80 000 : 800  h  50 000 : 500  i  700 000 : 7 000 

 

4 For each pair of numbers write down how many times smaller the first is than the second. 

 a  7 : 700  b  60 : 600  c  8 : 8 000   

 d  2 : 20 000  e  400 : 4 000  f  90 : 90 000   

g  700 : 70 000  h  300 : 30 000  i 5 000 : 5 000 000 

 

5 Write these numbers in order of size, smallest first. 

 

 7000000 70 7000 7 700 70000 
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6 Write down the values of these numbers in full: 

a  102  b  104  c  100 d 105  e  101  f  103 

 

7 Write these numbers as powers of 10. 

a  1 000 b  1  c  100  d  10 000 e  100 000 f  1 000 000 

 

8 Match the numbers written in full to the numbers written as powers of 10.   

Find the odd one out. 

10 000  100  1 000 1 000 000 10 100000 

105 103 101 100 104 102 106 

Thousands            Hundreds  Tens  Units  

The column headings can be written as powers of 10 like this: 

      103                     102                    101              100                       

The value of the power shows how many ‘times 10’ the digit in each column is worth. 

Examples 

105 104 103 102 101 100    or  100000s    10000s     1000s     100s     10s    1s 

 3 5 2 7 9               3  5 2       7      9 

The number 35 279 is made up of 5 digits. 

In this number  9 is worth 9 x 1 =9 

          7 is worth 7 x 10 = 70 

          2 is worth 2 x 100 = 200 

          5 is worth 5 x 1000 = 5 000 

          3 is worth 3 x 10 000 = 30 

000 
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Binary Number System 

The binary number system is based on 2 numbers.   

The binary system only uses the digits 0 and 1.   

The digits 2, 3, 4, 5, 6, 7, 8 and 9 do not exist in the binary system. 

 

The binary system uses place value in the same way as the denary (decimal) system.   

Compare denary (decimal) and binary headings: 

    X10  x10  x10    

Denary (decimal)  Thousands Hundreds Tens Units 

 

       X2    x2    x2    

Binary    Eights  Fours  Twos Units 

 

Compare denary (decimal) and binary column headings as powers: 

Denary (decimal) 103                     102  101  100            

Binary   23  22  21  20             

Or   8  4  2  1 

Examples of binary numbers: 

• 10 

• 1001 

• 111 

• 100100 

The value of the power shows how many ‘times 2’ the digit in each column is worth. The binary number 

system is referred to as base 2 and the decimal (denary) system is base 10.  

 

Examples 

32 16 8 4 2 1 OR 32 16 8 4 2 1 

 1 0 0 1 1    1 0 0 1 1 

    

       In this number  1 is worth 1 x 1 = 1 

         1 is worth 1x2 = 2 

         0 is worth 0x 4 = 0 

         0 is worth 0 x 8 = 0 

         1 is worth 1 x 16 = 16 

 



 

13 
 

 

Exercise B 

1 For each statement write TRUE or FALSE.  Give a reason for your answer. 

a  3 210 is a binary number because it has 0 and 1 in it. 

b  201 is a binary number because it only has digits up to 2. 

c  5565 is not binary because it uses digits 5 and 6 which are not in the binary number system 

d  100 is a decimal (denary) number because it is 10 times 10 and the decimal (denary) system is 

based on powers of 10. 

e  1 010 could be binary or decimal (denary). 

 

2 Find the value of the blue and orange 1’s in each of these binary numbers. 

[Draw a place value grid to help you if you need to] 

128 64 32 16 8 4 2 1 

        

 

a  10  b  1000  c  1000000  d  101    e  1010 

f  110  g  1100000  h  100001  i  11000000  j  10 010 

 

3 For each statement write TRUE or FALSE.  If your answer is FALSE give the correct answer.  

[All the statements relate to the binary system]. 

a  10 is twice as large as 1. 

b  100 is four times as large as 10. 

c  1000 is eight times as large as 1. 

d  10 is 4 times smaller than 10000. 

e  100 is eight times smaller than 100000 

f  10000000 is sixteen times larger than 1000. 

 

4 Match the numbers written in full to the numbers written as powers of 2.   

Find the odd one out. 

16 1 64 32 8 128 2  

21 24 26 20 25 22 23 27  
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Converting Denary Numbers into Binary Numbers 

Here are two methods for converting denary numbers into binary numbers. 

Example: Convert 25 from denary to binary.    

Place value method 

Step One: Begin with a binary place value grid. 

Start on the left until you find the highest number that can be subtracted from 25 and put a 1 in that place 

128 64 32 16 8 4 2 1 

   1     
Step Two: Find the difference 25- 16 = 9 

Step Three: Repeat the process 

128 64 32 16 8 4 2 1 

   1 1    
    9-8=1 

128 64 32 16 8 4 2 1 

   1 1   1 
    1-1=0 

Step Four: Put zero’s in the spaces 

128 64 32 16 8 4 2 1 

   1 1 0 0 1 
 

Answer: 25 is 1101 in binary 

Division by 2 method: 

This method involves remainders and repeatedly dividing by 2. 

Number Calculation Answer Remainder 

25 25/2 12 1 

12 12/2 6 0 

6 6/2 3 0 

3 3/2 1 1 

1 1/2 0 1 

Repeat until the answer is 0    

REMEMBER: The 1 that you are left with at the bottom is still a remainder and must be included within your 

answer.  

Read the number from bottom to top 

Answer 

25 = 11 001 in binary 

[You can check your answer by converting 11 001 back to denary] 
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Exercise C 

1 Convert each number from denary to binary. 

 a   10  b  15  c  16  d  24  e  30    f  100 

 g   212  h  78  I  200  j  146  k  230  i  255 

 

2 Find the answer to each denary addition. Give your answer in binary. 

 a 10 + 21  b   19 + 30  c  22 + 20  d   7 + 14   

e  6 + 11 + 15  f  35 - 15  g  100 - 36  h  45 - 19   

i  400 - 312    j  342 - 87 

 

3 Find the answer to each denary calculation. Give your answer in binary. 

 a  16 * 4  b  20 * 6  c  7 * 7  d  48 / 4 

 e  111 + 32  f  100 + 75  g 222 / 2     h  296  - 70 

 

 

 

 

 

 

 

 

4 For each number write down bit, nibble or byte 

 a 1 b 1111  c 11111111 d  1010  e 0 f  10110110 

 

 

 

  

A  bit  is a binary number 

0 and 1 are bits 

A nibble is a set of four binary digits. 

1001 is a nibble 

A byte is a set of 8 binary digits 

10001000 is a byte 
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Exercise D 

1 Convert the following numbers from binary to denary (decimal).   

Show your calculations for each. 

a  1110   b  10011  c  1100  d  10100  

e  101001  f  110011  g  1011011  h 1000 000  

i  1100100  j 11000011  

 

 

 

Converting Binary Numbers to Denary Numbers 

Numbers that look the same have different values in different number systems because they have a different 

base. 

100 in binary is not the same value as 100 in the denary (decimal) system. 

The number 10 in the binary system has a different value to the number 10 in the denary (decimal) system. 

To convert a binary number to a denary (decimal) number, write columns headings as place value.  

128 64 32 16 8 4 2 1 

Write the binary number underneath and added together the value of the columns to make the conversion. 

Example 

Convert 10110 from binary to denary (decimal). 

Write the number beneath the appropriate column headings: 

 16 8 4 2 1 

 1 0 1 1 0 

Add up the column heading for the columns where there is a 1. 

16 + 4 + 2 = 22 

10110 in the binary system is equivalent to 22 in the denary (decimal) system. 

The base of each number can be written like this: 

111102 = 2210 
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2 Which of the following are TRUE and which are FALSE? 

a  10012== 32 10  b  1011012> 4010  c  4510 == 1011012         

d  13410 > 11011112  e  9310 < 111102  f  1101102 > 1102 

g  11101112 == 11910  h 10111012< 10210  i  1001012 > 3110   

j  101101012== 18110  

 

3 Find the answer to each question. Give your answer in denary (decimal). 

 a  10d10 + 112  b  1002 + 7510  c  1112 + 3210  d  51210 + 10001112  

e  1010 – 102  f  10010 – 110002 g 4810 – 1100002 h  100100112 – 7010 

 

4 Find the answer to each question.  Give your answer in denary (decimal) 

a  102 * 102  b  112 * 1002  c  102 * 10012  d  10002 / 102 e  1112 + 3210  

f  1002  +4810  g 1000002 /10002     h  100002  - 510 

 

5 Use the number sequence below to answer the following questions. 

1001  10011  11101  100111 

 

a  Convert each number in this sequence from binary to denary (decimal).  

b  Write down the next number in the sequence in binary and denary (decimal)  
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Hexadecimal Number System 

The hexadecimal number system is based on 16 numbers.   

The hexadecimal system uses the following digits: 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

This table shows the numbers to 16 in decimal, hexadecimal and binary. 

Decimal Hexadecimal Binary 

0 0 0 

1 1 1 

2 2 10 

3 3 11 

4 4 100 

5 5 101 

6 6 110 

7 7 111 

8 8 1000 

9 9 1001 

10 A 1010 

11 B 1011 

12 C 1100 

13 D 1101 

14 E 1110 

15 F 1111 

 

As with binary and denary, hexadecimal also referred to by its base.  

Hexadecimal is base 16. 

Hexadecimal is based on powers of 16. 

        x16 

     

   161 160 

      5 8 

The 8 is worth 8 x 160 or 8 x 1 

The 5 is worth 5 x 161or 5 x 16 

In GCSE Computer Science you will only be working with numbers in the first two columns in hexadecimal. 

 



 

19 
 

  

Converting Hexadecimal Numbers  into Binary Numbers 

Use a place value grid to convert from hexadecimal to binary.   

Write a set of place value headings for each digit. 

Place value grids for 96 in hexadecimal looks like this: 

   9 6    

        

8 4 2 1 8 4 2 1 

        

 

Example        

Convert 9610 into hexadecimal. 

Split the number in half and write the first half of the binary scale on each side. This is because you are 

working with two nibbles. 
 

   9  6    

         

8 4 2 1  8 4 2 1 

1 0 0 1  0 1 1 0 

   

8 + 1 = 9  4 + 2 = 6 
 

You can then find which numbers in the binary scale add up to make the single hexadecimal digit.  

Answer 

96 in hexadecimal = 10010110 in binary 

 

Example        

Convert AF from hexadecimal into binary. 

REMEMBER: if the hexadecimal number contains the symbols A-F, you must first convert it to its denary 

equivalent.  

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                 

   A F    

   10 15    

8 4 2 1 8 4 2 1 

1 0 1 0 1 1 1 1 

        

8 + 2 = 10 8 + 4 + 2 + 1 = 15 
 

Find which numbers in the binary scale add up to make the single hexadecimal digit.  

Answer 

AF = 10101111 

NOTE: if the hexadecimal number is only a single digit e.g. A, 9 etc. you would only be required to write the 

scale once as the answer with only be 4 digits (a nibble) 
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Exercise E 

1  Convert each number from hexadecimal to binary. 

 a   A  b  F  c  14  d  1C  e  E6    f  9E 

 g   91  h  D9  I  D7  j  AF  k  DD  l  FF 

 

2 Match the hexadecimal number with its binary equivalent  

Hexadecimal B3 16 D6 25 3F 

      

Binary 10110 11010110 100101 111111 10110011 

 
 

3 Which of the following are TRUE and which are FALSE? 

Each question contains one binary number and one hex number 

 a 1616 < 0001 01102  b   0011 00002 > 3016  c  6116 == 0110 00012    

d  CC16 > 0011 01012  e  E816 == 1110 11012  f   D716 < 1101 01102   

g  FF16 < 1111 11102  h  AF16 > 1000 1111 2   i  1110 11112 == EF16 

j  ED16 < 1100 11102  k  AC16 > 1010 11112    l  1101 01102 == DE16 
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Converting Binary Numbers into Hexadecimal Numbers 

To convert binary to hexadecimal, reverse the process of converting from hexadecimal to binary.  

Use a place value grid like this to convert from binary to denary.  

8 4 2 1 8 4 2 1 

 

Example        

Convert 110010112 into hexadecimal. 

Split the number into two nibbles. Write the first half of the binary scale on each side.  

8 4 2 1 8 4 2 1 

1 1 0 0 1 0 1 1 

 

Add the numbers together to find the total for each side.  

8 4 2 1 8 4 2 1 

1 1 0 0 1 0 1 1 

        

1x8 + 1x4  

= 12 

1x8 + 1x2 + 1x1 

=11 

 

Convert 12 and 11 into hexadecimal 

                C             B 

REMEMBER: if the number is greater than 10 then it needs to be converted into its hexadecimal equivalent 

first.  

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

Answer 

11001011 = CB 

Converting numbers that are not 8 bits in length 

There are two ways to convert numbers that are not 8 bits in length. E.g. 101101 

Either        Or 

Split the binary number 4 bits from the right-

hand side: 

 

 Add zeros to the left-hand side until the 

number is 8 bits in length: 

 

  2 1 8 4 2 1 

  1 0 1 1 0 1 

        

2 8 + 4 + 1 = 13 
 

 8 4 2 1 8 4 2 1 

0 0 1 0 1 1 0 1 

        

2 8 + 4 + 1 = 13 
 

 

Answer 

101101 = 2D 
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Exercise F 

1 Convert each number from binary to hexadecimal. 

 a  0010 1101  b  0101 0101  c  1011 0010  d  0110 1010   

e  1011 1110    f  0011 0101  g   1110 1110  h  1101 0101  

i  0111 0100  j  0010 1010  k  0011 1010  l  0111 0111 

 

2 Compare the binary and hexadecimal numbers.   

Which of the following are TRUE and which are FALSE? 

 a 1916 < 0011 10012  b   0001 11012 > 25 16 c  6416 == 0110 01002   

d  1010 01002 < A716  e  6C16 > 0110 10112  f  E916 == 1110 10012  

g  0111 00012 < 7516  h  3D16 < 0011 1111 2  i  1111 11012 > FF16   

j  0110 11012 == ED16  k  1111 10102 == DA16  l  1101 10012 == DD16 

 

3 Which of these binary numbers are less than B216? 

 0100 0000; 1010 1010; 1100 0011; 1011 1101; 1111 1111; 

 

  



 

23 
 

 

 

Exercise G 

1 Convert each number from hexadecimal to denary. 

 a  A  b  F  c  14  d  1C  e  E6    f  9E 

 g  91  h  D9  i  D7  j  AF  k  DD  i  FF 

Converting Hexadecimal Numbers into Denary Numbers 

Converting from hexadecimal to denary uses the place value of each number.  

This number is 42 in the hexadecimal system 42hex 

Example 

Convert 93hex to denary 

                            x16 

 

161 160 

             9 3 

The 3 is worth 3 x 160 = 3 x 1 = 3  

The 9 is worth 9 x 161= 9 x 16 = 144 

Answer 

3 + 144 = 147 

Example 

Find the value of 7Fhex in denary. 

If the hexadecimal number includes letters then you must convert it to its denary equivalent first.  

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

                         x16 

 

161 160 

               7 F 

If a letter is used, you must work out the numerical value F = 15 

The F is worth 15 x 160 = 15 x 1 = 15  

The 7 is worth 7 x 161= 7 x 16 = 112 

Answer 

15 + 112 = 127 
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2 Match the denary workings out with the hexadecimal number  

4 x 16 + 15 9D 

9 x 16 + 4 D4 

9 x16 +13 4F 

13 x 16 +4 D9 

13 x 16+9 94 

 

3 Which of the following are TRUE and which are FALSE? 

 a 1516 < 2110  b   1916 > 2510  

c  6416 == 10010 d   12010 < 7D16   

e  CC16 > 20010  f  E916 == 23310 

g  18010 < AB16  h  FC16 < 25010   

i  25510 > FF16    j  23910 == EF16 

 

4 Find the answer to each calculation. Give your answer in denary. 

 a  1616 + 410  b  2916 * 210   

c  4C16– 710  d  3016/ 410 

 e  3610 + DE16  f  CD16 + 9910   

g F916– 5910      h  EE16/ 210 

 

5 Write these numbers in order of size, smallest first. 

 a   AB16  2510     1F16  30010      9916 

 b  C316  9F16      20010  4B16    8010 
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Converting Denary Numbers into Hexadecimal Numbers 

Here are two methods for converting denary numbers into hexadecimal numbers 

Example        

Convert 199  from denary to hexadecimal. 

Method One 

Step One: Convert the denary number to binary. 

128 64 32 16 8 4 2 1 

1 1 0 0 0 1 1 1 
  199 = 11000111 

Step Two: Convert the binary number into hexadecimal. 

8 4 2 1 8 4 2 1 

1 1 0 0 0 1 1 1 

        

12 7 

  11000111 = C7 

Answer: 199 is C7 in hexadecimal 

Method Two 

Use division to convert from denary to hexadecimal. 

Divide the number by 16. Remainders are also used in this conversion.  

Example        

Convert 199 from denary to hexadecimal. 

 0 1 2       r  7 

16 1 19 39 
 

REMEMBER: if the number is greater than 9 you must convert it to the hexadecimal equivalent.  

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

12 = C 

Answer:   

199 = C7 

[You can check your answer by converting C7hex back to denary] 
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Exercise H 

1 Convert each number from denary to hexadecimal. 

 a   9  b  15  c  40  d  90  e  122  f  135 

 g   157  h  164  i  199  j  217  k  200  i  240 

 

2 Compare these denary and hexadecimal numbers. 

Which of the following are TRUE and which are FALSE? 

 a 2C16 == 4410  b   3816 > 5610  c  7816 == 11410 d   10010 < 7E16  

e  B416 > 17610  f  C916 == 20110  g  21310 < DA16  h  FA16 < 25010   

i  23210 > E816    j  22010 == EC16 

 

3 Find the answer to each question. Give your answer in hexadecimal. 

 a  1016 + 1410  b  3616 * 210  c  3A16 - 1910  d  5416 / 410 

 e  EC16 -2210  f  AC16 + 6510  g FA16 - 4410      h  CE16 / 210 

 

4 Use the hexadecimal number sequence below to answer the following questions. 

D 17 21 2B 

a  Find the first four numbers in this sequence in denary. 

 b  Write down the next two numbers in the sequence in hexadecimal 

 

  



 

27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise I 

1 Work out the answer to each binary sum.  Give your answer in binary. 

 a  10 + 10   b  101 + 100   c  11 + 10 

 d  100 + 100   e  11 + 100   f 101 + 101 

 

2 Work out the answer to each binary sum.  Give your answer in binary. 

 a 111 + 111   b  1000 + 11   c  1000 + 100    

d  1101 + 101     e  101101 + 11101  f  101101 + 11110  

g  1101011 + 1001100  h  1110101 + 1111111   i  1010101 + 1101110 

 

 

 

Addition of Binary Numbers 

The same method for addition is used in binary as in denary (decimal).  

 

Example 

Find 100 + 110 

 1  0  0 

 1  1  0 + 

          1  0  1  1 

 

 

 

Answer:   100 + 110 = 1011 

In the addition of two binary numbers 

there are only four different possible  

outcomes: (denary) 

0 + 0 = 0 (0) 

1 + 0 = 1 (1) 

0 + 1 = 1 (1) 

1 + 1 = 10 (2) 

1 + 1 + 1 = 11 (3) - Occurs if a number is carried to the next column 

Reminder 

198 + 214 

1 9 8 

21 11 4 + 

4 1 2 

 

Add 8 and 4. 

Write down 2 

and carry 1. 

Add 9 and 1 and carried 1. Write 

down 1 and carry 1. 

In binary 1+1=10 

Write down 0 and carry 1. 

Add 1 and 2 

and carried 1.  

Write down 4. 
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3 Find the pairs of binary sums that give the same answer.  

1100 + 1101 1010 + 100 1000000 + 100 11001 + 1001011 

1000 + 100011 10100 + 101 110010+ 110010 11001 + 10100 

10 + 101 100000 + 100000 11 + 100 1 + 1101 

 

4 Jade and Cameron are playing a Higher or Lower Binary Card game.  For each round they each 

turn over a card and win a point if their answer, in denary (decimal), is higher. 

Find the value for each card. 

Work out which player wins each round. (Convert their total to denary) 

Write down who wins the game and their score. 

 

 Jade Cameron 

Round 1 10010 + 10001 10000 + 10101 

Round 2 11110 + 11011 11010 + 11000 

Round 3 110100 + 100111 101111 + 101010 

Round 4 111111 + 110000 100110 + 111000 

Round 5 1101001 + 1101011 1011000 + 1011100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adding Three Binary Numbers 

Use column addition to add binary numbers. 

Adding three binary numbers can result in more than one carry. 

Example 

Find 10+11+100 

  4 2 1 

   1 0 

   1 1 

  1 0 0  + 

1 0 0 1 

  1 

 

Answer  10+ 11 + 100 = 1001 

 

Add 0 + 1 + 1 = 1 write down 1 

Add 1 + 1 + 0 = 10 write down 0, carry 1 

Add 1 + 1 = 10 write down 0 carry 1 
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Exercise J 

1 Add the following sets of three binary numbers. Give your answer in binary. 

a  10 + 101 + 1000    b  1001 + 101 + 1010      

c  100100 + 10010 + 1011   d 10111 + 101000 + 111   

e 1001 + 1010100 + 101010 

2 For each pair of calculations insert either <, ==, or >. 

a  100  + 101 +1001  ⃝  1000 + 10000 +11 

 b  110011  + 1001 010 + 1011101  ⃝  101010 + 1011011 + 110001  
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3 Add the following sets of three binary numbers. Give your answer in binary. 

 a  11 + 11 + 11               b  101 + 111 + 101   

c  1 011 + 1111 +1101   d  10111 + 11011 + 11001  

e  11111 + 1111 + 101111  f  100111 + 110111 + 11011  

g  11111 + 11111 + 101101  h  1011111 + 110111 + 110101 

  

 

 

  

Example 

Find 10+11+11 

 

  4 2 1 

   1 0 

  1 1 1 

  1 11 1 + 

 1 0 0 0 

Answer  10 + 11 + 11 = 1000 

In the 2 column there are four 1’s.   

Carry two 1’s into column 22 

 

Subtraction of Binary Numbers 

The same method for subtraction is used in binary as in denary (decimal).  

Example 

Find 1110- 101 

  1  1  01  10 

       1  0  1  - 

  1  0  0  1 

 

Answer:   1110 - 101 = 1001 

In the subtraction of two binary numbers there are only three different possible outcomes: (denary) 

0 - 0 = 0 (0) 

10 - 0 = 10 (2) 

10 - 1 = 1 (1) 

11 - 1 = 10 (2) 

 

 

 

 
In binary 10 – 1 = 1 



 

31 
 

Exercise K 

1 Work out the answer to each binary subtraction.  Give your answer in binary. 

a  100 - 10   b  101 - 10   c  111 - 100   

d  1000 - 110    e  11101 - 10100  f  111010 - 101010   

g  1010101 - 10010  h  1101011 – 1011000 i  1000 - 111    

j  1101101 - 101100  k  1110110 – 1001010  l  11101011 - 1001010  

 

2 Tom and Ravinder are playing a game. For each round whoever has the highest score wins a 

point if their answer, in denary (decimal), is lower. 

Find the value for each player in each round. 

Work out which player wins each round. (Convert their total to denary) 

Write down who wins the game and their score. 

 

 Tom Ravinder 

Round 1 1010 - 111 1010 - 1001 

Round 2 101110 - 10011 100010 - 11010 

Round 3 101100 - 100101 111011 - 101110 

Round 4 111000 - 101101 111011 - 101010 

Round 5 111101 - 110001 1011011 - 1000110 
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Multiplication using a Binary Shift 

The multiplication operation is different using the binary number system.  

A binary shift is used to move the binary digits which gives them a different place value.  

In denary if you moved a number to the left it would become 10 times larger.  

For example: 

             X10          x10   x10 

Decimal (denary)  1000s                    100s  10s     1s 

               8  8 x 10 = 80 

           8     0   

           9     4  90 x 10 = 900 

              9     4     0  4 x 10 = 40 

           900 + 40 = 940 

The least significant place is then filled with 0.  

So 94 x 10 would become 940. 

The same principle applies in binary.  

A left shift is used to multiply in binary. 

If a number is moved to the left it is multiplied in terms of the place value.  

Each position makes the number 2 times larger or multiplies it by 2.  

Example 

      X2    x2    x2 

Binary   Eight  Four  Two  Units 

   1  1 x 2  

                                                                                                       1                            0  = 10 (2) 

 

      X2    x2    x2 

Binary   Eight  Four  Two  Units 

   1      0  10 x 2  

       1     0      0  = 100 (4) 

 

As with denary, the least significant places (columns to the right) that are empty are then filled with a 0.  

So 10 (2) would become 100 (4). 

Example 

      X2    x2    x2 

Binary   Eight  Four  Two  Units 

          1      1  11 x 4  

     1    1    0      0  = 1100 (12) 

 

A 12. 12 is 1100 
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Exercise L 
 

1 Multiply the following binary numbers by the given number.  Give your answers in binary 

 a  101 x 2  b  111 x 2  c  1011 x 2  d  1110 x 4   

e  1111 x 2    f  10000 x 4  g  11101 x 2  h  11101 x 4   

i  11110 x 2  j  100101 x 2  k  111010 x 4  l  111011 x 2 

 

2 In each calculation:  

i) Convert the given binary number to denary 

ii) Multiply the binary number by the denary number and give your answer in binary and 

denary 

 a  10101 x 4  b  11101 x 4  c  110110 x 4  d  1101 x 8   

e  11001 x 4  f  11011 x 4  g   10110 x 8  h  1101011 x 2   

i  111011 x 4  j  1011 x 8  k  101101 x 4  l  1111 x 8 

 

 

  

The least significant place value is always filled with a 0 when multiplying binary.  

The number has been shifted to the left or a left shift has occurred.  

 

You can multiply by the following numbers: 

• Moving 1 position to the left multiplies by 2 

• Moving 2 positions to the left multiplies by 4 

• Moving 3 position to the left multiplies by 8 

• Moving 4 positions to the left multiplies by 16 

• Etc. 
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Division using a Binary Shift 

The division operation is very similar to the multiplication operation when using the binary number system. 

A binary shift is used to move the binary digits to give them a different place value.  

A right shift is used for division.  

If a number is shifted to the right it has the opposite effect to that of a left shift.  

The number is divided by 2 for each column that it is moved.  

Example 

      X2    x2    x2 

Binary   Eight  Four  Two  Units 

       1    1     0  110 / 2  

         1     1  = 11 (3) 

As the example above shows, in denary the starting number would be 6, and the calculation  6 divided by 2 

equals 3. 3 is 11. 

If the least significant places that are lost are zero then they are removed from the end. So 110 (6) would 

become 11 (3). 

Example 

       X2     x2     x2 

Binary   Eight  Four  Two  Units 

  1    1      1     0 1110 / 2  

    1      1     1 = 111 (7) 

As the example above shows, in denary the starting number would be 14, and the calculation 14 divided by 2 

equals 7. 7 is 111. 

 

If the least significant place is a 1, then the outcome differs slightly. Shifting to the right gives integer 

division. The last digit is still lost in the shift, and you need to be aware that your answer is rounded down.  

Example 

       X2    x2    x2 

Binary   Eight  Four  Two  Units 

  1    0      1  101 / 2 = 10 (2) 

  1      0  

In denary this example would be 5 / 2 = 2.5 

In binary the example is   101 / 2 = 10 (10 is 2 in denary) 

This is still the correct answer, although you need to be aware that the remainder/decimal has been lost. 

This may mean that you answer is not exact. This method gives the quotient. 
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Exercise M 

1 Divide the following binary numbers by the given denary number.  

 a  110 / 2  b  100 / 2  c  1010 / 2  d  1100 / 4   

e  1101 / 2    f  10000 / 4  g   11101 / 2  h  11100 / 4   

i  11110 / 2  j  100101 / 2  k  110110 / 4  l  111101 / 2 

  

2 For each of the following calculations:  

i) Convert the binary number to denary 

ii) Divide the binary number by the denary number and give your answer in both binary 

and denary 

a  10100 / 4  b  11000 / 4  c  110110 / 4  d  110111 / 4   

e  11101 / 4  f  110101 / 4  g   1011000 / 8 h  1101010 / 4   

i  111011 / 8  j  1010011 / 8  k  10110100 / 8 l  11011100 / 8 

 
 

  

You can divide by the following numbers: 

• Moving 1 position to the right divides by 2 

• Moving 2 positions to the right divides by 4 

• Moving 3 positions to the right divides by 6 

• Moving 4 positions to the right divides by 8 

• Etc. 
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Compression 

 

 

Exercise A 

1 This frequency table records the pieces of homework set each night for Stuart. 

Number of pieces in one school night Frequency 

0 21 

1 42 

2 52 

3 67 

4 12 

5 0 

6 1 

Total 195 

 

Frequency 

In maths data is sorted into tables to make it easier to understand and interpret. 

Frequency tables are used to sort data to make it easier to read or interpret. 

This is necessary when there is a set of data with a large number of different values. 

This set of data does not need to be recorded in a frequency table: 

Crystal records how many pieces of homework she is give on every school night for one week: 

4 1 3 5 3 

 

However, if Crystal recorded her homework for a term or a year she would have too much data to record.  

She would sort her data into a frequency table. 

Crystal is never given more than 6 pieces of homework on one night.  She keeps a record for a year, counts 

(tallies) her results and puts them in a frequency table. 

Homework for one year: 

Number of pieces in one school night Frequency 

0 21 

1 42 

2 52 

3 61 

4 12 

5 6 

6 1 

Total 195 

 

Tables are used to sort data in Computer Science. 
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a  How often was Stuart given six pieces of homework in one night? 

b  What was the most frequent number of pieces of homework Stuart was given? 

c  How often was Stuart given two pieces of homework? 

d  Was Stuart set one piece of homework or four pieces of homework more often?  Find the 

difference in the frequency for these values. 

e  How many days are there in total in Stuarts’s school year? 

f  Was Stuart set homework on every night of the year?  Explain your answer. 

 

2 Jacob and Kayleigh are using two six-sided dice to find the probability that they will score 12 

when the numbers of the dice are added together. 

They each roll the dice 100 times. 

Their results have been recorded in a frequency table.  

These are Jacob’s results: 

Sum of two dice Frequency 

2 1 

3 2 

4 3 

5 8 

6 20 

7 28 

8 18 

9 9 

10 4 

11 5 

12 2 

Total 100 

 

These are Kayleigh’s results 

Kayleigh 

Sum of two dice Frequency 

2 3 

3 0 

4 4 

5 6 

6 17 

7 25 

8 11 

9 11 

10 10 

11 8 
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12 5 

Total 100 

 

 a  Why does the table start with 2 and not 1? 

b  Which player rolled 12 most often? 

c  How many more times did Jacob roll a 7 than Kayleigh? 

d  Which player scored more than 10 most often?  Show your calculations to explain your 

answer. 

e  Which player scored the most number of even scores?  Show your calculations to explain 

your answer. 

 

3 Four candidates stand for election as Head Student; Candidate E, Candidate F, Candidate G and 

Candidate H.  The person with the most votes wins and the person who comes second will act 

as Deputy Head Student. 

 H H E H G H E H F E H F H

 E E E F F H H E F H E H H

 F H H H H F H E F E 

 

a  Draw a frequency table of these results. Include a column to tally the results. 

b  How many votes were recorded in total? 

c  Who won the election? How many votes did they get? 

d  Who should be Deputy Head Student? Explain your answer. 
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Types of Compression 

In computing, compression is used to reduce the number of bits it takes to store a particular piece of data. 

This makes the size of the file used to store this data smaller. 

This data could be a piece of text, an image, a piece of sound etc. 

Compression can be split into two categories, lossless and lossy.  

Lossless and lossy compression work very differently.  

Lossless compression reduces the size of a file and allows the original file to be recreated exactly. 

 This means that none of the original information is lost and when the file is decompressed/uncompressed, 

the file will be EXACTLY as it was to begin with. The quality is NOT reduced.  

Lossy compression removes or eliminates "unnecessary" pieces of information to make the file smaller.  

For example, if a picture had a lot of blue sky, there would be different shades of blue. Instead of storing all 

the different shades, it would just store a few. Storing less information would ‘compress’ the file and make 

it smaller.  

If pieces of information are removed, then the image will not be able to be put back to EXACTLY how it was 

to begin with, so the quality is reduced. 
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Compression of Data using Huffman Coding / Encoding 

Huffman encoding is an algorithm used to reduce the size of a message that needs to be sent or stored. 

Huffman encoding reduces the number of bits required to store the message, which reduces its size.   

Huffman encoding is a lossless method of compression. 

Without using compression it takes 8 bits to store one character (assuming the characters are stored using 

ASCII) 

It would take 136 bits (17 * 8 = 136) to store this message: 

ANNA ATE AN APPLE 

Using Huffman encoding, letters with a higher frequency are stored using a smaller number of bits. This 

reduces the number of bits and the space required to store a message. 

If we store the most frequent letters using a smaller number of bits it reduces the number of bits overall 

e.g.  

 

A appears most frequently so is stored using the least amount of bits.  

N appears next most frequently so is stored using a slightly larger number of bits. 

Etc. 

L appears joint least frequently, is represented using the largest number of bits.  

A 0 

N 10 

space 110 

P 1110 

E 11110 

T 111110 

L 111111 

 

A N N A  A T E  A N   

1 2 2 1 3 2 6 5 3 1 2 3 

 

A P P L E 

1 4 4 6 5 

 

Using this system would enable the same message to be stored using only 51 bits. This has reduced the 

number of bits by 136-51 = 85. 
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Creating a Huffman Tree 

A Huffman tree is drawn to show the different values and their frequencies.  

This can then be used to compress the data.  

Example 

1 Draw a Huffman tree for the following set of data 
2 Encode the letters  
3 Find out how many bits have been saved by compressing the data using a Huffman Tree 

A B A B C B A B D D A D D C 

C B A D E D D D D D B B C D 

C C D D C C D D D D C D D C 

Answer 

a) Step One: Sort the data by frequency  

Value  Frequency 
A  5 
B  7 
C  10 
D  17 
 

Step Two:            Find the two values with the lowest frequencies. Add the frequencies. 

  Value  Frequency 
A  5 
B  7 
C  10 
D  17 

 5 + 7 = 12. 
 
Step Three: Draw the first three nodes of the Huffman Tree with 12 as the parent (shown by a *) 
and the two values as the leaves.        

        
        
       Parent 
 
 
 
        
       Leaves 
 
 
 

Step Four: Rewrite the table with the compressed data in place of the two lowest values. 

Value  Frequency 
C  10 
*  12 
D  17 
 

 

5:A 

 

7:B 

 

12:* 
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Step Five: Repeat the process; combine the two lowest values.  

Value  Frequency 
C  10 
*  12 
D  17 

10 + 12 = 22,  

Step Six: Create a new parent node of 22. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Step Seven: Rewrite the table with the compressed data in place of the two lowest values  

Value  Frequency 
D  17 
*  22 
Step Eight:  Repeat the process; combine the remaining two values 

Value  Frequency 
D  17 
*  22 
  17+22=39 
 

 

 

 

 

 

 
 
 
 
 
 

 

 

10:C 

 

7:B 

 

22:* 

 

5:A 

 

7:B 

 

12 
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Step Nine: Create a new parent node of 39. 

 

 

 

All numbers have been included within the Huffman tree. The Huffman Tree is complete for this set of data. 
Step Ten:  Encode using 1 and 0 for each pair of leaves. 
 
 
 

 

 

 

 

 

 

 

 

 

 

b) Reading the codes from the parent node downwards letters are coded as 

D:0 C:10 B:111 A:110 

c) Without compression the data uses 39*16 bits = 624 bits.   

With compression using a Huffman Tree the data uses 5*3+7*3+10*2+17*1=15+21+20+17=73 bits 

Saving = 624-73=551bits. 

 

 

39 

17:D  

0 

22 

1 

10:C 

0 

12 

1 

5:A 

0 

7:B 

1 
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Exercise B 

1 a)    Draw a Huffman tree for the following set of data 
b) Encode the letters  
c) Find out how many bits have been saved by compressing the data using a Huffman Tree 

A B B C D A B A 

B C D B C B B B 

B B A B A C B A 

 

 

2 a)    Draw a Huffman tree for the following set of data 
b) Encode the letters  
c) Find out how many bits have been saved by compressing the data using a Huffman Tree 

D B B B D B B  

B C D B C B B  

B B A D B B B  

A B B C C D D 

D A D A B C B 

 

3 a)    Draw a Huffman tree for the following set of data 
b) Encode the letters  
c) Find out how many bits have been saved by compressing the data using a Huffman Tree 

 

E D B C E E A E B D  

B E B E A E E B B B 

A B E E E B B A C C 

B B E E A E A C E E 

 

 

4 a)    Draw a Huffman tree for the following set of data 
d) Encode the letters  
e) Find out how many bits have been saved by compressing the data using a Huffman Tree 

 

Letter  Frequency 

A  8 

B  13 

C  7 

D  5 

E  15 

F  9 
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Compression of Data using Run Length Encoding 

Run-length encoding is an algorithm used to reduce size of a file/piece of data. Run length encoding 
reduces the number of bits required to store the file by combining repeating pieces of data. This data is 
called a run and is typically encoded into two bytes. 

Example 

The piece of text below contains repetition, the letter A is repeated 15 times: 
 

AAAAAAAAAAAAAAA 

 

It would usually take 15 bytes to store this information. 1 byte = 1 character.  

 

The same string of characters can be stored as 15A.  

The run count. The amount of times that the letter or number is repeated. 

The run value. The value which has been repeated.  

 
As stated above, this would then be stored as two bytes, not 15. A byte to store the run count and a byte to 
store the value. 

 
Example 

The piece of text below contains repetition, although more than one letter is repeated.  

AAAAAAbbbXXXXXt 

 

This would be grouped as: 

6A 

3b 

5X 

1t 

 

This would be displayed together as: 

6A3b5X1t 

 

Numbers can also be compressed using the same method.  

 
Example 

The number below contains repetition, although more than one digit is repeated.  

0000011100000011 

 

This would be grouped as: 

50 

31 

60 

21 
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Exercise C 

1 Compress the following data using Run-length encoding. 

 

AAAbbHHHHHHHHZZ 

 

 

2 Compress the following data using Run-length encoding. 

 

11110000111111100000000111 

 

 

3 Compress the following data using Run-length encoding. 

 

LLLLLLLkkkkkkkkkKKKKKKSSSSSAAAAAAADDDDDD 

 

 

4 Compress the following data using Run-length encoding. 

 

aaaaAAAAGGGGfffffffHHHHHHHHHZZZZZAAAAAAAa 

 

 

5 Compress the following data using Run-length encoding. 

 

11100111101111100000001001110 
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Algorithms 

  

An algorithm is a sequence of steps that can be followed to complete a task or solve a problem.  

You will follow algorithms on a daily basis to complete many different tasks. 

Examples of algorithms could be things like following a food recipe, making a cup of tea, following a set of 

directions or the instructions required to complete a particular problem in mathematics.  

Algorithms in Mathematics 

You will be familiar with rules and methods in maths. 

When you follow a rule or use a method solve an equation you are using an algorithm because you are solving a 

problem and trying to find a solution. 

Example 

To answer this question you will use the balancing method to solve the equation.   

Solve  3y + 4 = 19  {subtract 4 from both sides} 

  3y= 15   {divide both sides by 3} 

  y = 5   {the solution} 

 

The sequence of steps can be represented as a set of operations: 

 

 

For this equation this sequence of steps will always find the correct answer/solution so this is an algorithm. 

However, this method is not an algorithm for solving all equations – it only works for this equation.  

An algorithm for solving any equation would need to work for every possible equation. 

 

   Distance = Speed x Time 

   ‘To calculate distance multiply speed by the time taken’. 

   This is always true.  𝑫 = 𝑺 × 𝑻 is an algorithm for finding distance. 

 

 

Algorithms in Computer Science 

Algorithms in Computer Science are also a series of steps to solve a particular problem or task.  

Usually these algorithms are represented using a language called Pseudocode or by using diagrams called Flow 

Diagrams. For the purpose the explanations and exercises, algorithms will be written using Pseudocode.  

Once algorithms have been planned using either or both of these methods, they will then be created using 

programming code for the computer to run them. This is how computer programs are written.  

 

-4 ÷3 

D 

S T 
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Pseudocode Example 

 
BEGIN 

INPUT name 

OUTPUT “Welcome” 

INPUT age 

IF age > 12 THEN 

OUTPUT “You can watch the film” 

ELSE   

OUTPUT “You cannot watch the film” 

ENDIF 

END 

Flow Diagram Example 
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Variables and Constants 

In mathematics when a letter is used in algebra it is representing a variable.   

Once the value of the variable is known it can be substituted for the letter. 

Example 

Find the value of this expression when b = 4, f= 5 and p = -3 

𝑏 + 𝑓 + 𝑝 

Answer 

𝑏 + 𝑓 + 𝑝 

= 4 + 5 + −3 

= 9 − 3 

= 6 

A constant is a value that does not change.  In this term 4 is a constant and m is a variable: 

     4𝑚 

In Computer Science, variables and constants are used within algorithms to store data.  
This data can be a piece of text, an integer, a date etc.   
 
Variables and constants often look the same, but it is the data which they hold that is important.  
Within an algorithm the data held by a variable may change somewhere during the algorithm.  
This change could be that it is overwritten completely, or altered slightly. 
 In contrast, a constant holds a value which will stay the same throughout the algorithm.  
 
Example 
In the algorithm below, the data contained within the total and subtotal variables changes whereas the data 
contained within the vat constant does not.  
 
 

VAT =  1.2  

subtotal = 0 

total = 0 

subtotal = 2.00 + 1.00 + 2.00 

total = subtotal * vat 

 

OUTPUT total 

 

The output generated by this algorithm would be 6.00. This is the total of the items purchased, with 20% vat 
added.  

Creates a constant called vat with the value 1.2 

Creates a variable called subtotal with the value 0 

Creates a variable called total with the value 0 

Adds 2.00, 1.00 and 2.00 and stores it in subtotal 

Multiplies subtotal (5.00) by vat (1.2) and stores 

in total 

Outputs the contents of the total variable  
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Variable Declaration 

The declaration of a variable is the first time that a variable is created.  
This creates a container to enable us to store a value later.  
 
Declarations can look different depending on the programming language that you are using or the method 
you are using to design an algorithm e.g. pseudocode, flow diagram etc.  
 
The example below declares a variable and assigns it a name.   
 
Example 
 
var variableName 

 

var number1 

 
Depending on how you are designing or programming your algorithm, it may be that you have to state the 
specific type of variable that you are creating e.g. is it going to store text? Is it going to store a number? Etc. 
 
Example 
 
int variableName; 

 

char variableName 

 
NOTE: ‘int’ would store an integer and ‘char’ would store characters/text.  
 
In python, a variable is not declared until it is assigned a value, this is covered in the next section.  
 
Example (python) 
 
variableName = 10 

variableName = “Mr Smith” 

 
NOTE: Text is usually enclosed in speech marks to show that text is being used.  
Text in an algorithm is known as a text string. 
 
Numbers are not enclosed in speech marks to show that a number is being used.  
Whole numbers in an algorithm are known as integers.  
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Assignment 

As previously covered, variables and constants are used to store data values. In an algorithm, putting this 
value into a variable or constant is known as assignment.  
 
A single equal sign (=) is used to show that a value is being assigned to a variable or constant. This explains 
why the relational operator for ‘equal to’ is a double equal sign (==).  
 
Example 
 
variableName = 15 

variableName = “Hello World” 

 
age = 45 

name = “Mr Smith” 

 
After a value has been assigned to a variable it can then just be referred to by the name that it has been 
given. 
 
Example 
 
name = “Mr Smith” 

OUTPUT name 
 
The above algorithm would store the words Mr Smith in the variable called name and then output the 

contents of name. 

Output 
 
Mr Smith 
 
Assignment can occur multiple times in an algorithm. If the same variable name is used, the data is 
overwritten. Sometimes this is something which you want to happen. 
 
Example 
 
wage = 10 

wage = wage * 4 

OUTPUT wage 

 
The above algorithm uses substitution. The algorithm would store the number 10 in the variable called 

wage. It would then substitute its original value with itself multiplied by 4. This would mean that value would 

then equal 40. It then outputs the contents of wage.  

Output 

40 
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Exercise A 

1 Using the algorithm below, work out the value of the variable ‘number3’ using the variable 

values given.  

 

number1 = ________ 

number2 = ________ 

 

number1 = number1 * 2 

number2 = number2 + 18 

number3 = number1 + number2 

 

OUTPUT number3 

 

 a  number1 = 10, number2 = 20  b  number1 = 15, number2 = 9 

c  number1 = 12, number2 = 16  d  number1 = 40, number2 = 25   

e  number1 = 19, number2 = 33   f  number1 = 27, number2 = 13 

 

2 Using the algorithm below, work out the value of the variable ‘number3’ using the variable 

values given. 

 

number1 = ________ 

number2 = 5 

 

number1 = number1 * 5 

number1 = number1 + number2 

number3 = number1 - 14 

 

 OUTPUT number3 

 

 a  number1 = 10    b  number1 = 8 

c  number1 = 15    d  number1 = 27   

e  number1 = 33    f  number1 = 45 
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Selection 

In algorithms, selection is when a question is asked, and depending on the answer, the program follows a 

given course of action. Depending on the answer to this question a different path through the algorithm may 

be taken. Selection statements are also known as if statements or conditional statements.  

Selection could be used to give a different course of action depending on the answer to a question in the real 

world.  

Example 

If you are male then it is recommended to eat 2500 calories, but if you are female it is recommended to eat 

2000 calories.  

In an algorithm, this might be written as: 

 

IF gender == “male” THEN  

calories = 2500  

ELSE 

calories = 2000  

ENDIF 

This selection statement only asks a single question - if they are male. In this situation there is only one other 

possible answer. The ‘else’ statement means that anything else other than male will result in the calories 

equalling 2000.  

So if gender = “female” the answer would be false and calories would equal 2000.  

NOTE: The if, else and endif are in line with each other. This shows that they are connected. The indented 

instruction is only selected for the part of the question which is yes/true.  

 

If we are asking a question with multiple answers, then the statement will differ slightly. 

Example 

number = 122 

 

IF number > 100 THEN  

OUTPUT “Large Number!”  

ELSEIF number > 50 THEN 

OUTPUT “Medium Number!” 

ELSE 

OUTPUT “Small Number!”  

ENDIF 

 

There can be an unlimited number of ‘elseif’ statements added. The ‘else’ at the end of the statement would 

mean that if any of the earlier questions are not yes/true, then that will be returned.  

E.g. if 30 were entered, none of the earlier questions would be yes/true, so “Small Number!” would be 

returned. 
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Exercise B 

1 Using the algorithm below, work out whether the algorithm will output “older than you” or 

“not older than you” using the variable values given. 

dog_age = _______________ 

dog_years = dog_age * 7 

person_age = _______________ 

IF dog_years > person_age THEN 

 OUTPUT “Your dog is older than you!” 

ELSE 

 OUTPUT “Your dog is not older than you.” 

 

 a  person_age = 10 dog_age = 3   b  person_age = 19 dog_ age = 6  

c  person_age = 47 dog_ age = 8   d  person_age = 53 dog_ age = 9  

e  person_age = 42 dog_ age = 7   f  person_age  = 49 dog_ age = 7  

 

 

2 Using the algorithm below, work out what will be output when number is output at the end of 

the algorithm. Use the variable values given. 

 

 number = _________ 

 IF number >= 64 THEN 

     number = number / 3 

 ELSEIF number >= 32 THEN 

     number = number * 4 

 ELSEIF number >= 16 THEN 

     number = number -  23 

ELSEIF number >= 8 THEN 

     number = number * 8 

 ELSE 

  number = number + 9 

 OUTPUT number 

 

a  number = 66   b  number = 31   c  number = 32 

d  number = 14   e  number = 30   f  number = 70 



 

55 
 

g  number = 76   h  number = 7    i  number = 84  

 
 

 

Exercise C 

1 Using the algorithm below, work out the cost of the postage for each parcel using the variable 

values given. 

 

 country = ________ 

item1 = ________ 

item2 = ________ 

item3 = ________ 

Nested selection 

Selection statements can be included inside each other to ask another question based on the answer to the 

first question e.g. Are you in year 10? Are you in tutor group 10.3? Etc. This is known as nested selection.  

 

Example 

Once the answer to the first question has been determined e.g. is the person’s age less than 12, depending 

on the answer the second question may be asked.  

 

age = 14 

height = 1.1 

IF age < 12 THEN 

    OUTPUT “Sorry, you are not old enough to go on this ride” 

ELSE 

IF height <= 1.2 THEN 

OUTPUT “Sorry, you do not meet the height requirements” 

    ELSE 

OUTPUT “Join the queue!” 

ENDIF 

ENDIF 

The above algorithm would answer false for the first selection statement as the individual is 14, so would 

move to the instructions contained within the else part of the statement. This would then cause the second 

selection statement to be carried out and check whether the person less than or equal to 1.2m. As the 

person is 1.1m the second selection statement would be true and the output be “join the queue!”. 
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total = item1 + item2 + item3 

 

IF country == "US" 

IF total <= 50 

OUTPUT "Shipping Cost is £14.99" 

ELSEIF total <= 100 

OUTPUT "Shipping Cost is £9.99" 

ELSEIF total <= 150 

OUTPUT "Shipping Costs £4.99" 

ELSE 

     OUTPUT "FREE" 

ENDIF 

ELSEIF country == "UK":  

IF total <= 50: 

OUTPUT "Shipping Cost is £4.99" 

ELSE 

OUTPUT "FREE" 

  ENDIF 

 ENDIF 

 

a  item1 = £47       item2 = £29       item3 = £18      country = UK  

b  item1 = £19       item2 = £24       item3 = £21       country = UK  

c  item1 = £14       item2 = £21       item3 = £9       country = US  

d  item1 = £51       item2 = £37       item3 = £20       country = US  

e  item1 = £37       item2 = £64       item3 = £9       country = UK  

f  item1 = £21       item2 = £33       item3 = £16       country = UK 

g  item1 = £11       item2 = £26      item3 = £31       country = US  

h  item1 = £6       item2 = £19       item3 = £47       country = UK 
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2 Using the algorithm below, work out which grade each student will receive using the variable 

values given. 

result = ____________ 

IF result >= 90 THEN 

 IF result >= 97 THEN 

  grade = “A*” 

 ELSEIF result >= 95 THEN 

  grade = “A+” 

 ELSEIF result >= 93 THEN 

  grade = “A=” 

 ELSE 

grade = “A-” 

ENDIF 

ELSEIF result >= 80 THEN 

 IF result >= 86 THEN 

  grade = “B+” 

 ELSEIF result >= 83 THEN 

  grade = “B=” 

 ELSE 

grade = “B-” 

ENDIF 

ELSEIF result >= 70 THEN 

 IF result >= 76 THEN 

  grade = “C+” 

 ELSEIF result >= 73 THEN 

  grade = “C=” 

 ELSE 

grade = “C-” 

 ENDIF 

ELSE 

print “You are required to retake the test!” 
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ENDIF 

a  result = 94  b  result = 88  c  result = 80  d  result = 72  

e  result = 87  f  result = 70  g  result = 76  h  result = 68   

i  result = 91  j  result = 82  k  result = 95  l  result = 99 
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Definite Iteration 

In an algorithm, iteration is the act of repeating part or all of the instructions. This is also referred to as a 

loop. Definite iteration repeats instructions a fixed amount of times. 

Example 

In definite iteration, a variable is used to record how many iterations have taken place, or how many times 

the instructions are repeated. 

The iteration starts with the first number and stops when the second number has been reached. It is called 

definite iteration because the code will only repeat this set number of times.  
 

FOR variableName = 0 to 5 DO 

OUTPUT “Hello”  

NEXT variableName 

 

The first time the algorithm runs, the variable is given the first number, in this case 0.  

When the NEXT instruction is reached, the variable is changed to the next number, in this case 1. The 

instructions are repeated again.  

When the second number is reached the iteration is stopped.  

This means that the instructions are repeated when the variable is 0, 1, 2, 3, 4 and 5. When the variable 

reaches 5 the code stops. The output for this algorithm is shown below. 

Variable Value Output 

variableName = 0 Hello 

variableName = 1 Hello 

variableName = 2 Hello 

variableName = 3 Hello 

variableName = 4 Hello 

variableName = 5 Hello 

variableName = 6 Iteration stops, nothing is output 

Example 

number = 0 

FOR count = 0 to 4 DO 

number = number + 1 

OUTPUT number  

NEXT count 

The above algorithm will add 1 to the number variable each time it is run. It will then output the value of 

number before repeating the sequence. The algorithm will generate the output below.   

Variable Value Output 

count = 0 1 

count = 1 2 

count = 2 3 

count = 3 4 

count = 4 5 

count = 5 Iteration stops, nothing is output 

 

Controls how many times the code repeats 

The instruction which is repeated 

Instructs the algorithm to repeat again. 
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Exercise D 

1 Work out the output for the algorithm below. 

 

number = 6 

FOR count = 0 to 15 DO 

number = number * 2 

number = number - 4 

OUTPUT number 

NEXT count 

 

a  Work out the output generated by the first 8 iterations for the algorithm above. A similar 

table to the one in the example above can be used.  

b  How many times will the above algorithm iterate? 

c  If the value of the number variable is changed to 10, work out the output generated by the 

first 8 iterations for the algorithm above. 

 

2 Using the algorithm below, work out what will be output on the given iterations. 

 

number = 4 

FOR count = 3 to 13 DO 

number = number * 2 

IF number < 25 THEN 

OUTPUT “True” 

  ELSE 

   OUTPUT “False” 

NEXT count 

 

 

a  Work out the output generated by the first 8 iterations for the algorithm above. A similar 

table to the one above can be used. 

b  How many times will the above algorithm iterate? 

c  If the value of the number variable is changed to 10, work out the output generated by the 

first 8 iterations for the algorithm above. 
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Indefinite Iteration 

Indefinite iteration is also referred to as a loop. Indefinite iteration repeats instructions until a condition is 

met. This means that this type of iteration will not always repeat instructions the same amount of times.  

This type of iteration is used when it is not known exactly how many times the algorithm will loop.  

WHILE answer != ”computer” DO 

answer = INPUT “Input password” 

ENDWHILE 

 

Note: INPUT “Input password” would output a message saying “Input password” and allow a 

password to be entered. 

The above algorithm checks a password that has been entered. If the password is incorrect (answer != 

“computer”) then the loop continues to iterate.  

As it is an indefinite loop it will continue to iterate while the condition is true. When the condition is not true, 

in this case if answer == computer, the iterations will stop. 

For example, if the correct password was entered incorrectly twice and then entered correctly, the output 

would be as below. 

Output Input Loop Condition 

Input password answer = “comput” “comput” != “computer” 

Input password answer = “compute” “compute” != “computer” 

Input password answer = “computer” “computer” = “computer” 

Iteration stops, nothing is output.   

 

In an indefinite iteration, the variable used within the condition can be changed by the algorithm in order to 

control how many iterations of the loop occur.  

 

count = 0 

WHILE count < 50 DO  

count = count + 5  

ENDWHILE 

While the condition is false the loop will continue 

The instructions which are repeated 

Causes the loop to end when the condition is not 

true been met 

The count variable is initially set to 1 

The iteration will continue while count is less than 50. 

Increases the count variable by 5 each time the statement 

iterates – 1st iteration: count = 5, 2nd iteration: count = 10, 

3rd iteration count = 15. This continues until count is >= 50.  
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Exercise E 

1 Using the algorithm below, work out the iterations for each of the different variable values.  

 

total = 1 

WHILE total < 20 DO  

OUTPUT total 

total = total + 1 

ENDWHILE 

a  Work out the output generated by the first 8 iterations for the algorithm above. A similar 

table to the one above can be used. 

b  How many times will the above algorithm iterate? 

c  If the value of the variable total is changed to 10, how many times with the above 

algorithm iterate? 

 

2 Using the algorithm below, work out how many times the statement would iterate for each of 

the different variable values.  

 

total = ________ 

WHILE total < 100 DO  

OUTPUT total 

total = total * 2 

ENDWHILE 

 

a  total = 12   b  total = 18   c  total = 7    

d  total = 11   e  total = 14   f  total = 2 
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Subroutines 

In algorithms, subroutines are often used to reduce the number of instructions when there is a particular 

task or part of the code which must be repeated.  

Rather than repeating the same instructions multiple times, these instructions are written once and then 

used elsewhere in the code.  

Using the same instructions over and over again, without duplicating them, means that the number of 

instructions within the algorithm are reduced. This is to make algorithms more efficient.  

Efficiency is very useful if they are later turned into computer programs.  

 

Creating a subroutine: 

SUBROUTINE  

identifier(parameters)  

# instructions here  

ENDSUBROUTINE  

 

Example 

Below is a simple subroutine that stores the word ‘Hi’ into a variable called ‘welcome’. 

SUBROUTINE  

say_hi()  

welcome = “Hi”  

ENDSUBROUTINE 

 

The subroutine is given a name, which in this example is ‘say_hi’. This allows other parts of the algorithm to 

refer to this sequence of instructions.  

‘Calling’ a subroutine means that the sequence of instructions inside the subroutine are executed.  

This can be done multiple times within the same algorithm if needed.  

A subroutine is called by using its name. The name of this subroutine is ‘say_hi’.  

You can assign the output from the subroutine to a variable. 

Example 

greeting = say_hi() 

 

You can the output the result of the subroutine. 

Example 

OUTPUT say_hi()  

 

Instead of doing something as simple as displaying a word, subroutines can be used to do more complicated 

things such as perform regularly used calculations.  

 

 

Identifies the beginning of the subroutine 

The name of the subroutine and any parameters 

The instructions which will be reused 

Identifies the end of the subroutine 
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Exercise F 

1 Work out the output for the algorithm below, using the given parameters when the subroutine 

is called.   
 

SUBROUTINE  

triple(number) 

number = number * 3  

RETURN number  

ENDSUBROUTINE 

 

result = triple(__) 

OUTPUT result 

 

a  triple(3)    b  triple(12)    c  triple(9) 

d  triple(15)    e  triple(31)    f triple(43) 

g  triple(39)    h  triple(27)    i triple(47) 

This is very similar to how some algebra works.  

Example  

The algorithm below is set out in the same way as the first example. It is given the name ‘my sum’.  

The variable names within the brackets are called parameters. These parameters are used later in the 

subroutine to store the numbers which we want to add up.  

 

SUBROUTINE  

my_sum(a, b)  

result = a + b  

RETURN result  

ENDSUBROUTINE 

Once a subroutine has been created it can be called 

later in the algorithm as many times as it is needed. 
 

answer = my_sum (2, 3)  

OUTPUT my_sum (2, 3)  

 

 

The subroutine adds a and b and stores them in a  

variable called result. This variable is then output.  

The numbers within this subroutine may change  

each time it is executed, which is why we use  

parameters/variables and not the numbers  

themselves.  

Whichever numbers are contained within the brackets are used within the subroutine.   

Whichever numbers are placed in the brackets 

will be used within the sum – like in algebra, 

the a and b represent these numbers.  

The 2 will be stored in parameter a and the 3 

will be stored in the parameter b.  
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2 Work out the output for the algorithm below, using the given parameters when the subroutine 

is called.   

 

SUBROUTINE  

bigger(number1, number2) 

IF number1 > number2 THEN 

answer = number1 * 4  

  ELSE  

answer = number2 * 4  

  ENDIF  

RETURN answer  

ENDSUBROUTINE 

 

result = bigger(__, __) 

  

IF result >= 50 THEN 

  OUTPUT “True” 

 ELSE 

  OUTPUT “FALSE” 

 ENDIF 

 

a  bigger(6, 8)    b  bigger(8, 7)     c  bigger(9, 7) 

d  bigger(11, 16)   e  bigger(13, 18)   f  bigger(13, 17) 

g  bigger(21, 5)   h  bigger(14, 20)   i  bigger(17, 19) 
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Common Algorithms

 
 

Algorithms that Search: Binary Search 

A binary search is an efficient algorithm for finding an item from an ordered list of items. e.g. a binary search 

could be used to find the number 8 in the following list of numbers 11, 12, 5, 13, 8, 1, 4, 7  

To work the numbers have to be in order: 1, 4, 5, 7, 8, 11, 12, 13. 

There are lots of different search algorithms e.g. linear search, comparison search, digital search etc. Different 

search algorithms search with different levels of efficiency. This means different algorithms may take more or 

fewer operations to find a particular piece of data within a list. 

The ideal search algorithm will find the value you are looking for using the fewest possible operations.  

Example 

Firstly you must put the numbers into order from smallest to largest. In this example we are searching for the 

number 9. 

1 2 3 4 5 6 7 8 9 10 

2 6 9 12 16 18 20 23 45 99 

 

Find the middle value. In this example there are 10 values, so 10 / 2 = 5 - the 5th value. 

1 2 3 4 5 6 7 8 9 10 

2 6 9 12 16 18 20 23 45 99 

 

 

Is this equal to, greater than, or smaller than 9? (The number which you are looking for) 

16 is greater than 9 (16 > 9) so you know your number must be to the left of 16. Make a new list with all the 

numbers to the left. 

1 2 3 4 5 6 7 8 9 10 

2 6 9 12 16 18 20 23 45 99 

 

We now need to search the new list for the number 9. 

1 2 3 4 

2 6 9 12 

 

Find the middle value again. There are now 4 values left. 4 / 2 = 2 so we are starting with the 2nd value. 

1 2 3 4 

2 6 9 12 

 

 

 



 

67 
 

 

  

 

Is this equal to, greater than, or smaller than 9? 

6 is smaller than 9 (6 < 9) so we can remove the numbers to the left as we know our number is not there. 

 

1 2 3 4 

2 6 9 12 

 

 

We can again search the new list for the number 9. 

3 4 

9 12 

 

 

Again, find the middle value. With only two numbers left 2 / 2 = 1 so we look at the 1st value. 

3 4 

9 12 

 

Is this equal to, greater than, or smaller than 9? 

The 3rd number is equal to 9 so we have found our number!! 

 

The binary search algorithm could be represented using the following set of instructions: 

 

WHILE the number has not been found DO 

 GET the middle number 

IF it is the value you are looking for. 

Well done, your found your number! 

ELSEIF it is larger than the one you are looking for 

Take the values to the left of the middle value 

ELSE 

Take the values to the right of the middle value 

 ENDIF 

REPEAT the instructions 
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Exercise A 

1 Given the list 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, how many times would the algorithm have 

to repeat to find the value 30? List each of the steps that you take.  

  

2 Given the list 17, 21, 33, 38, 55, 60, 72, 88, 94, how many times would the algorithm have to 

repeat to find the value 72? List each of the steps that you take. 

 

3 Given the list 11, 40, 30, 48, 23, 19, 51, 44, 26, 29, how many times would the algorithm have to 

repeat to find the value 19? List each of the steps that you take. 
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Algorithms that Sort: Bubble Sort 

A bubble sort is an algorithm for sorting data into a specific order, usually in order of size. E.g. a bubble sort 

could be used to sort 5, 19, 12, 8, 11, 16 into order from largest to smallest – 5, 8, 11, 12, 16, 19.  

There are many different sorting algorithms e.g. insertion sort, selection sort, merge sort etc.  

Different sorting algorithms sort data with different levels off efficiency. This means different algorithms may 

take more or fewer operations to sort data into the required order.  

The ideal sorting algorithm will sort the data into the order that is required with the fewest possible 

operations.  

A bubble sort works by comparing a piece of data to the next piece of data in a list. The data is then moved 

based on which value is bigger / smaller.  

Example 

The list of number that we begin with. The numbers are not in order. We want to sort the numbers from 

smallest to largest.  

Element Number 1 2 3 4 5 

Value 13 2 6 4 9 

 

1) Compare elements 1 and 2 
1 2 3 4 5 

13 2 6 4 9 
 

2) Is element 1 > element 2?  

3) Yes: so swap them 

1 2 3 4 5 

2 13 6 4 9 
 

4) Compare elements 2 and 3 
1 2 3 4 5 

2 13 6 4 9 
 

5) Is element 2 > element 3? 

6) Yes: so swap them 

1 2 3 4 5 

2 6 13 4 9 
 

7) Compare elements 3 and 4 
1 2 3 4 5 

2 6 13 4 9 
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8) Is element 3 > element 4? 

9) Yes: so swap them 

1 2 3 4 5 

2 6 4 13 9 
 

10) Compare elements 4 and 5 
1 2 3 4 5 

2 6 4 13 9 
 

11) Is element 4 > element 5? 

12) Yes: so swap them 

1 2 3 4 5 

2 6 4 9 13 
 

 

You have come to the end of the list. At the end of the first pass through the numbers the list has been 

changed from this: 

1 2 3 4 5 

13 2 6 4 9 

 

To this: 

1 2 3 4 5 

2 6 4 9 13 

 

It is still not in order, but it is getting closer! 

If any changes have been made you must start again. This is to check that the numbers are now in order. If 

they are not further changes will then be made.  

Note: Each time you go through the numbers and come to the end of the list it is known as a ‘pass’.  

 

1) Compare elements 1 and 2 
1 2 3 4 5 

2 6 4 9 13 
 

Swap? No 
1 2 3 4 5 

2 6 4 9 13 
 

2) Compare elements 2 and 3 
1 2 3 4 5 

2 6 4 9 13 
 

3) Is element 2 > element 3? 

4) Yes: so swap them 

1 2 3 4 5 

2 4 6 9 13 
 

5) Compare elements 3 and 4 
1 2 3 4 5 

2 4 6 9 13 
 

Swap? No 
1 2 3 4 5 

2 4 6 9 13 
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Exercise B 

1  Sort the list [7, 3, 5, 2] into order using the bubble sort algorithm. List the order of the numbers 

at the end of each pass.  

 

2  Sort the list [3, 2, 5, 7, 4] into order using the bubble sort algorithm. List the order of the 

numbers at the end of each pass.  

 

3  Sort the list [11, 3, 9, 1, 8, 7] into order using the bubble sort algorithm. List the order of the 

numbers at the end of each pass.  

 

 

4 List [8, 2, 8, 7, 3, 1, 2] is being sorted using bubble sort. Fill in the blanks to show the list after 

each pass. 

 

After the 1st pass: [2, 8, 7, 3, 1, 2, 8]  

After the 2nd pass: [2, 7, 3, 1, 2, 8, 8]  

After the 3rd pass: [2, 3, 1, 2, 7, 8, 8]  

After the 4th pass:  

After the 5th pass:  

6) Compare elements 4 and 5 
1 2 3 4 5 

2 4 6 9 13 
 

Swap? No 
1 2 3 4 5 

2 4 6 9 13 
 

 

After the second pass through the numbers we are left with the following order: 

1 2 3 4 5 

2 4 6 9 13 

 

You will notice that the numbers are now in the correct order!  

Although this is the case, if any changes have been made you must start again! This is to check that the 

numbers are in order. If they are then no further changes will then be made. 
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After the 6th pass: 

 

5 List [1, 5, 8, 7, 6, 1, 7] is being sorted using bubble sort. Fill in the blanks to show the list after 

each pass. 

 

After the 1st pass: [1, 5, 7, 6, 1, 7, 8]  

After the 2nd pass: [1, 5, 6, 1, 7, 7, 8]  

After the 3rd pass:  

After the 4th pass:  

After the 5th pass:  

After the 6th pass:  

After the 7th pass:  

 

6 List [6, 8, 2, 1, 1, 9, 4] is being sorted using bubble sort. Fill in the blanks to show the list after 

each pass. 

 

After the 1st pass: [6, 2, 1, 1, 8, 4, 9] 

After the 2nd pass:  

After the 3rd pass:   

After the 4th pass:  

After the 5th pass:  

After the 6th pass:  

After the 7th pass: 
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Completing a Trace Table for an Algorithm 

A trace table is used to track the values of variables as they change throughout an algorithm.  

 

Example 

total = 0 

total = total + 2 + 2 

OUPUT total 

 

Throughout the program, the total will have changed from 0 to 4.  

This can be very useful when you have an algorithm and you are not getting the answer you expect when 

you have worked through all of the instructions.  

This is also known as a dry run and would form part of your testing of an algorithm.  

 

Example 

 

1 greeting = “Hello” 

2 FOR count = 0 to 5 DO 

3  OUTPUT greeting  

4 NEXT count 

 

Note: Each instruction/line can be given a number so that they are easier to follow 

This trace table is generated for the algorithm above.  

 

 greeting count OUTPUT 

1 Hello   

2  0  

3   Hello 

2  1  

3   Hello 

2  2  

3   Hello 

2  3  

3   Hello 

2  4  

3   Hello 

2  5  

3   Hello 

 

The columns are labelled with the variable 

/ constant names and outputs.  

Work through the algorithm one 

instruction at time.  

Each time the variable/constant appears, 

make a note of the line number and its 

value.  

Make a note of any outputs. 

Continue this until the algorithm is 

completed. 
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Working through the algorithm one instruction at a time: 

Line 1: The greeting constant is set to “Hello”. 

Line 2: As it is a definite loop, the count variable is set to 0. 

Line 3: Line 3 outputs the greeting constant which is “Hello”. 

Line 2: The next iteration takes place. The count variable is set to 1. 

Line 3: Line 3 outputs the greeting constant which is “Hello”. 

Line 2: The next iteration takes place. The count variable is set to 2. 

Line 3: Line 3 outputs the greeting constant which is “Hello”. 

The iterations will take place until the count variable is set to 5. This will then cause the iteration/loop to 

stop having executed the 5th iteration. 

 

 

Example 

 

1 x = 1 

2 WHILE x < 30 DO 

3  x = x * 2  

4  OUTPUT x 

5 ENDWHILE 

6 OUTPUT “Finished!!” 

 

Note: Each instruction/line can be given a number so that they are easier to follow 

 

The trace table for the algorithm above is on the next page.  
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Exercise C 

1 Create and complete a trace table for the algorithm below. Use the table which has been drawn 

for you.   

 

 

1 number = 10 

2 FOR count = 1 TO 2 DO 

3  number = number + 6 

4  number = number - 4 

5  OUTPUT number 

6  OUTPUT “Keep looping!” 

7 NEXT count 

8 OUTPUT “Finished looping!!” 

 

 number count OUTPUT 

    

    

    

    

    

    

    

    

    

    

    

    

 

 

 

 x OUTPUT 

1 1  

3 2  

4  2 

3 4  

4  4 

3 8  

4  8 

3 16  

4  16 

3 32  

4  32 

6  Finished!! 
 

Working through the algorithm one instruction at a time: 

 

Line 1: The x variable is set to 1. 

Line 2: As it is an indefinite loop, the x must be < 30 (x = 1). 

Line 3: The x variable is multiplied by 2 and stored in (x = 2). 

Line 4: Outputs the x variable, which is 2.  

Line 2: As it is an indefinite loop, the x must be < 30 (x = 2). 

Line 3: The x variable is multiplied by 2 and stored in (x = 4). 

Line 4: Outputs the x variable, which is 4.  

Line 2: As it is an indefinite loop, the x must be < 30 (x = 4). 

Line 3: The x variable is multiplied by 2 and stored in x (x = 8). 

Line 4: Outputs the x variable, which is 8.  

Line 2: As it is an indefinite loop, the x must be < 30 (x = 8). 

Line 3: The x variable is multiplied by 2 and stored in x (x = 16). 

Line 4: Outputs the x variable, which is 16.  

Line 2: As it is an indefinite loop, the x must be < 30 (x = 16). 

Line 3: The x variable is multiplied by 2 and stored in x (x = 32). 

Line 4: Outputs the x variable, which is 32.  

Line 2: As it is an indefinite loop, the x must be < 30 (x = 32). 

Line 5: As x is greater than 30 (x = 30) the iteration/loop is ended.  

Line 4: Outputs Finished!!  
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2 Create and complete a trace table for the algorithm below.   

 

1 x = 6 

2 FOR count = 1 TO 3 DO 

3  answer = count * x  

4  OUTPUT answer 

5 NEXT count 

6 OUTPUT “Finished!!” 

3 Create and complete a trace table for the algorithm below.   

 

1 number = 64 

2 count = 1 

3 WHILE number >= count DO 

4  number = number / 2   

5  count = count + 1 

6 ENDWHILE 

7 OUTPUT “Finished!!” 

 

4 Create and complete a trace table for the algorithm below.   

  

1 x = 60 

2 total = 1 

3 FOR count = 1 TO 6 DO 

4  IF total < x THEN  

5   total = total * 3 

6   OUTPUT “Smaller” 

7  ELSE  

8   OUTPUT “Bigger!” 

9 NEXT count 

10 OUTPUT “Finished!!” 
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Logic Circuits 

 

 

Logic Gates 

In a computer, logic gates are used to make decisions based on the data which they receive. This data is in 
the form of electronic signals, which can be 1 ‘on’ or 0 ‘off’. When using logic gates 1 is also referred to as 
‘true’ and 0 as ‘false’. 

Individually logic gates can only make very simple decisions, but when used together they can make very 
complex decisions – they are the building blocks for what takes place in the CPU.  

The symbols below work in the same way as number machines in mathematics.  

An output is generated based on the input that it is given.  

 

 

 

 

 

 

NOT Gate 

 

 

 

 

 

 

 

 

 

The NOT logic gate produces an output that is opposite to the input. 

Another way of saying this is that the number is inverted.  

If the input is 1 (true) then the output is 0 (false). If the input is 0 

(false) then the output is 1 (true). 

This can also be written using a formula - Q = NOT A - A is the input, 

Q is the output. 

It does not have to be A and Q, any letter can be used.  

AND Gate 

 

 

 

 
 

The AND logic gate has two inputs. In the example they are A and B. 
The two inputs produce a single output. 
In plain English, the rule for the AND logic gate is "If both A and B are 
true, then the output is also true, otherwise it is false”. This means 
that both inputs A and B have to be 1 (true) for the output Q to be 1 
(true).  
This can also be written using a formula - Q = A AND B - A and B are 

the inputs, Q is the output. 

 
 

Input Output 

+7 8 15 

(A) (Q) 

0 1 

(A) 

(Q) 

(B) 

1 

1 
1 
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Exercise A 

1 Find the output for the following logic gates based on the input given.  

  

a) 

  

b) 

 
 

 

 

c) 

 

d) 

 
 

 

 

(A) 

(Q) 

(B) 

0 

0 
? 

(B) 

(A) 

(Q) 
0 

1 
? 

(A) (Q) 

1 ? 

(A) 

(Q) 

(B) 

1 

1 
? 

OR Gate 
 
 

This OR logic gate also has two inputs. In the example above they are 
A and B. The two inputs produce a single output. 

In plain English the rule for the OR logic gate is "If either or both A, B 
are true then the output is also true”. This means that if A or B is 1 
(true) then the output Q will be 1 (true). 

NOTE: With the OR gate, if both inputs are 1 (true) then the output 
will still be 1 (true). It would still meet the condition of ‘either’ input 
needing to be true.  

This can also be written using a formula - Q = A OR B - A and B are 

the inputs, Q is the output. 

 

(B) 

(A) 

(Q) 
1 

0 
1 
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e) 

 

f) 

 
  

g) 

 

h) 

 
 

  

(A) 

(Q) 

(B) 

0 

1 
? 

(B) 

(A) 

(Q) 
1 

1 
? 

(A) (Q) 

0 ? 

(B) 

(A) 

(Q) 
0 

0 
? 
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When more than one logic gate is joined together it is known as a logic circuit.  

The NOT, AND and OR gates still have the same effect on the input.  The output will then move to the next 

gate and be used as the input.  

Example 

 

 

 

 

 

 

If both inputs (A) and (B) are 0 to begin with, the NOT gate would invert the 0 input to 1.  

To make the logic circuits easier to follow, all outputs are usually labelled with a letter, so (C) would be 1.  

The input (B) has not been changed so is still 0. The OR gate would have inputs (B) 1 and (C) 0, as one of the 

inputs is 1 the output would also be 1.   

1 (true) would be output from this circuit.  

 

Example 

 

 

 

 

 

 

 

If input (A) is 1 and (B) is 0 to begin with, the NOT gate would invert the 1 input to 0.  

At point (C) the value will be 0. Input (B) has not been changed so is still 0.  

The OR gate would have inputs (B) 0 and (C) 0, as both of the inputs are 0 the output would also be 0.   

0 (false) would be output from this circuit.  

 

 

1 

0 

0 

0 

1 

(A) 

(B) 

(Q) 

(C) 

0 

0 

1 

0 

0 

(Q) 

(A) 

(B) 

(C) 
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2 Find the output for the following logic gates based on the input given.  

 

a) 

 

 

 

 

 

b)  

 
 

 

 

c) 

  

 

 

 

 

(A) 

1 

0 
? 

(B) 

(Q) 

1 

1 

? 

(A) 

(B) 

(Q) 

0 

1 

? 

(A) 

(B) 

(Q) 
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d) 

 

 

 

  

0 

0 

0 

(A) 

(B) 

(Q) 

Truth Tables 

When working with logic circuits it is important that you are able to work out all of the different possible 
inputs and then all of the different possible outputs.  

It would be very difficult to keep track of this in your head, especially with more than one input. For this we 
use a truth table. 

A truth table lists every possible combination of inputs. From that you can then work out the different 

possible outputs. 

Example 

Input 
Output (Q) 

A B C 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 

 

Firstly all of the different combinations of inputs are added. As there are two inputs there are 4 possible 

combinations – both 0, both 1, 1 and 0, and 0 and 1.  

The inputs that you have listed are then used to work out the output to the logic circuit.  

In the example above, (A) is 1 and (B) is 0. (C) will be 0 as both (A) and (B) need to be 1 for the AND gate to 

output 1.  

The input for the NOT gate will be (C) 0. The NOT gate will invert this to output 1 (true) from the circuit. 

The same process will then be used to work out the remaining outputs.  

(C) 

(A) 

1 

0 
? 

(B) 

(Q) 
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Exercise B 

1 Draw a truth table for the following logic gates. Ensure that all of the different input 

combinations are included.  

 

a) 

  
 

 

 

Input Output 
(Q) A 

1  

0  

b) 

 

 

Input Output 
(Q) A B 

1 1  

0 1  

1 0  

0 0  

c) 

 
 

 

 

Input Output 
(Q) A B 

   

   

   

   

2 Draw a truth table for the following logic circuit. 

Ensure that all of the different input combinations are 

included.  

 

 

Input Output 
(Q) A B C 

1 1   

0 1   

1 0   

0 0   

 

 

 

(A) (Q) 

? ? 

(A) 

(Q) 

(B) 

? 

? 
? 

(B) 

(A) 

(Q) 
? 

? 
? 

(C) 

(A) 

? 

? 

? 

(B) 

(Q) 
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3 Draw a truth table for the following logic circuit. Ensure that all of the different input 

combinations are included.  

 

 

Input Output 
(Q) A B C 

1 1   

0 1   

1 0   

0 0   

 

 

 

4 Draw a truth table for the following logic circuit. Ensure that all of the different input 

combinations are included.  

 

 

 

Input Output 
(Q) A B C D 

1 1 1   

0 0 0   

1 0 0   

0 0 1   

1 1 0   

0 1 1   

1 0 1   

0 1 0   

 
 

 

 

 

 

 

 

 

(C) 

? 

? 

? 

(A) 

(B) 

(Q) 

? 

? 

? 

? 

(A) 

(C) 

(B) 

(Q) (D) 
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5 Draw a truth table for the following logic circuit. Ensure that all of the different input 

combinations are included.  
 

  

 

 

Input Output 
(Q) A B C D 

     

     

     

     

     

     

     

     

 
 

6 Draw a truth table for the following logic circuit. Ensure that all of the different input 

combinations are included.  

 

 

 

Input Output 
(Q) A B C D E 

      

      

      

      

      

      

      

      

 

  

(D) 

? 

(Q) 
? 

? 

? 

(A) 

(C) 

(B) 

? 

(Q) 

? 

? 

? 

(A) 

(D) 

(B) 

(C) 

(E) 
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Glossary 

Terms 

Term Definition 

Denary / Decimal 

A number system which used the digits 0-9. The place 

value of each number is 10 times the number to the 

right. 

Base 10 
Another name for the denary / decimal number 

system.  

Place Value 

The value a number has based in its position within a 

number e.g. 1401 – 1 thousand, 4 hundreds and 1 

unit. 

Powers 

Multiplying a number repeated by itself. Usually 

written above a number e.g. 32 would signify 3 x 3, 34 

means 3 x 3 x 3 x 3 

Binary 

A number system which used the digits 0 & 1. The 

place value of each number is 2 times the number to 

the right. 

Base 2 Another name for the binary number system. 

Remainders 
A number which is left over when two numbers do 

not divide equally.  

Hexadecimal 

A number system which used the symbols 1-9 & A-F. 

The place value of each number is 16 times the 

number to the right. 

Base 16 Another name for the hexadecimal number system. 

Nibble A number which is 4 binary digits (bits) in length. 

Left Shift 

The name given to the process used to multiply a 

binary number. All the bits in the number are moved 

to the left. 

Right Shift 

The name given to the process used to divide a binary 

number. All the bits in the number are moved to the 

right. 

Integer A whole number 

Modulo / Modulus 
An operation that finds the remainder when one 

number is divided by another. 

Quotient 
The whole number result of dividing one number by 

another number. e.g. 20 / 6 = 3 r 2. The quotient is 3 

Frequency 

How frequently a number or letter appears in a 

sequence of numbers or letters e.g. 1124224 – 2 has 

a frequency of 3 as it appears 3 times.  

Compression 
The reduction in the number of bits needed to 

represent data. Reducing the size of a file. 

Bit A single binary digit, either 1 or 0.  

Lossy 

A form of compression where part of the data is 

removed and the data cannot be returned to its 

original state.  

Lossless 
A form of compression where no data is removed and 

the data can be returned back to its original state.  
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Decompressed or uncompressing 
The act of turning a compressed file back into its 

original state.  

Huffman encoding 
A compression algorithm designed to reduce the size 

of a file through a reduction of bits. 

Huffman tree 
A diagram which shows the frequency of a value 

within a set of data, ready for Huffman encoding  

Run-length encoding 
A compression algorithm designed to reduce the size 

of a file by grouping repeated bits 

Byte The term given to 8 bits.  

Run 
The repetition of a letter or number when using run-

length encoding.  

Run count 
The amount of times that a letter or number repeats 

when using run-length encoding. 

Run value 
The letter or number which is repeated when using 

run-length encoding. 

Algorithm 
A sequence of rules or instructions which can be 

followed to solve a problem or complete a task.  

Variable 
A piece of data which stored within an algorithm. The 

value of a variable will change within the algorithm. 

Constant 

A piece of data which stored within an algorithm. The 

value of a constant will not change within the 

algorithm. 

String 

A text string in an algorithm can only store letters, 

numbers, spaces and punctuation. They are usually 

shown in “” quotation marks.  

Data 

A value which is stored within a computer – in 

algorithms, values are stored within variables or 

constants.  

Declaration Where a variable is first written within an algorithm. 

Assignment Where a value is assigned to a variable or constant.  

Substitution 
Where the value stored inside a variable is changed 

for another value.  

Condition 

In an algorithm, a condition is something which needs 

to be met in order for something to happen e.g. IF 

age == 12.  

Selection 

Also known as If Statements or conditional 

statements, selection checks whether a condition is 

true e.g. IF age == 12 THEN…. An instruction is then 

selected based on this.  

Nested selection 

Where more than one selection statement is used 

inside each other. E.g. IF age = 12 THEN, IF height < 

1.2m THEN.. 

Iteration 
Repeating part or all of the instructions within an 

algorithm. Also known as a Loop. 

Definite Iteration 
An iteration which will repeat a fixed amount of 

times. Also known as a For Loop. 

Indefinite Iteration 
An iteration which will repeat while a condition is 

true. Also known as While Loop,  



 

88 
 

Subroutine 
Subroutines are used in algorithms where part of the 

algorithm needs to be repeated multiple times.  

Efficient 
In algorithms, efficiency is using the fewest 

instructions possible to complete a task.  

Executed 
Another word for instructions being worked through 

or run.  

Parameters 
The data which is passed to a subroutine when it is 

called.  

Search algorithm 

A set of instructions that can be followed to find a 

piece of data within a list e.g. find 9 from 1, 3, 6, 8, 9, 

14, 17. 

Binary Search 
An efficient search algorithm that finds an item in an 

ordered list  

Sort algorithm 

A set of instructions that can be followed to sort a list 

of data in a particular order e.g. smallest to largest 

e.g. sort 6, 7, 13, 2, 8, 10 to  2, 6, 7, 8, 10, 13.  

Bubble sort 
A sort algorithm which sorts data into order – 

normally size order 

Pass 
When performing a Bubble sort, each time that you 

have gone through the list is known as a pass.  

Trace table 
A table which allows you to track the values of 

variables as they change throughout an algorithm.  

Dry run 

Running through an algorithm using a method such as 

a trace table to ensure that the algorithm works or to 

spot errors.   

Logic gate 

Are used to make decisions based on the data which 
they receive. This data is in the form of electronic 
signals, which can be 1 ‘on’ or 0 ‘off’. When using 
logic gates 1 is also referred to as ‘true’ and 0 as 
‘false’. 

Logic circuits 

When more than one logic gate is joined together. 

Logic circuits are used to make decisions on the 

inputs that they are given.  

Boolean 
A Boolean value only has two possible values: true or 

false.  

CPU 
The Central Processing Unit. Processes all instructions 

inside a computer. 

Inverted Turned to be the opposite e.g. turn 1 to 0 or 0 to 1.  

NOT gate 
A gate which inverts its input e.g. turns 1 (true) to 0 

(false) or 0 (false) to 1 (true).  

AND gate 
A gate where both inputs must be 1 (true) for the 

output to be 1 (true). 

OR gate 
A gate where either input can be 1 (true) for the 

output to be 1 (true). Both inputs can also be 1 (true). 

Truth Table 

Allows you to work out every combination of inputs 

and the outputs which they generate from a logic 

circuit.  
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Aithmetic Operators  

Symbol Name Example 

+ Addition 
print 6 + 2 

>>> 8 

- Subtraction 
x = 3 – 2 

>>> 1 

* Multiplication 
x = 5 * 2 

>>> 1 

/ Division 
x = 16 / 8 

>>> 2 

% or MOD Modulus 
x = 5 % 3 

>>> 2 

DIV Quotient 
x = 17 DIV 5 

>>> 3 

Relational Operators 

Symbol Name Example 

== Equal to 

4 == 4  

>>> True 

 

8 == 4  

>>> False 

≠ or != Not equal to 

7 != 4  

>>> True 

 

7 == 7  

>>> False 

< Less than 

4 < 8 

>>> True 

 

6 < 4  

>>> False 

≤ or <= Less than or equal to 

4 <= 4  

>>> True 

 

2 <= 4  

>>> True 

 

8 <= 4  

>>> False 

> Greater than 

8 > 4  

>>> True 

 

4 > 4  

>>> False 

≥ or >= Greater than or equal to 

4 >= 4  

>>> True 

 

4 >= 2 

>>> True 

 

4 >= 8 

>>> False 
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